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Abstract In this paper, the purpose is to introduce and study a new modified
shrinking projection algorithm with inertial effects, which solves split common
fixed point problems in Banach spaces. The corresponding strong convergence
theorems are obtained without the assumption of semi-compactness on map-
pings. Finally, some numerical examples are presented to illustrate the results
in this paper.
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1. Introduction
To model inverse problems in phase retrievals and medical image reconstruction [2],
Censor and Elfving [6] introduced the concept of the split feasibility problem (for
short, SFP) in framework of finite-dimensional Hilbert spaces in 1994. It has been
founded that the SFP can be used in many areas of applications, such as image
restoration, computer tomograph, radiation therapy treatment planning and other
areas of mathematical research [3, 5, 7–9,16,21].

As a generalization of the SFP in 2009, Censor and Segal [10] introduced the
following split common fixed point problem (for short, SCFPP): Let H1 and H2 be
two Hilbert spaces and A : H1 → H2 be a bounded linear operator, T : H1 → H1

and S : H2 → H2 be two mappings (F (T ) and F (S) denote the fixed point sets of
T and S, respectively). The split common fixed point problem for mappings T and
S which is to find a point x∗ satisfing

x∗ ∈ F (T ) and Ax∗ ∈ F (S). (1.1)

The solution set of (1.1) is denoted by Γ, i.e., Γ = {x∗|x∗ ∈ F (T ), Ax∗ ∈ F (S)}.
Since then, the SCFPP has been widely studied by many authors in Hilbert

spaces (see [11,12,22,23,31]). Usually in order to achieve strong convergence prop-
erties of the SCFPP, we often do this directly by considering the assumption of
semi-compactness on the mappings. In addition, there are papers using some al-
gorithms to replace the assumption of the mappings, such as Halpern iterative
algorithm, viscosity iterative algorithm, shrinking projection algorithm. Ulteriorly,
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there are a few studies on the split common fixed point problem in the framework
of Banach spaces. For example in recent years, Takahashi and Yao [28] and Taka-
hashi [26, 27] studied the split common fixed point problem in the setting of one
Hilbert space and one Banach space, and obtained some weak convergence theorems
and strong convergence theorems. Furthermore, in the framework of two Banach
spaces, there are many studies established as follows:

In 2015, Tang et al. [29] studied the SCFPP for asymptotically nonexpansive
mappings and quasi-strictly pseudo-contractive mappings. Then, the strong con-
vergence theorem was also proved with the condition of semi-compactness on the
mappings. In 2016, Shehu et al. [25] studied split feasibility problems and fixed point
problems for left Bregman strongly nonexpansive mappings, and showed strong con-
vergence theorems by Halpern iterative method.

Recently, Ma et al. [18] also studied split feasibility problems and fixed point
problems in Banach spaces, and obtained the strong convergence theorem by the
following shrinking projection iterative algorithm

zn = J−1
1 (J1xn + γA∗J2(PQ − I)Axn),

yn = J−1
1 ((1− αn)J1zn + αnJ1Szn),

Cn+1 = {v ∈ Cn : ϕ(v, yn) ≤ ϕ(v, xn), ϕ(v, zn) ≤ ϕ(v, xn)},
xn+1 = ΠCn+1x1, n ≥ 1,

where E1 is a 2-uniformly convex and 2-uniformly smooth real Banach space, E2 is
a smooth, strictly convex and reflective Banach space and Q is a nonempty closed
convex subset of E2, A : E1 → E2 is a bounded linear operator with the adjoint
operator A∗, S : E1 → E1 is a closed quasi-ϕ-nonexpansive mapping, PQ : E2 → Q
is the metric projection and ΠCn+1

: E1 → Cn+1 is the generalized projection.
In view of the above studies and methods and in order to accelerate better the

convergence rate of the iterative algorithms. The inertial effects have been studied
recently by many authors in terms of variational inequality problems, inclusion prob-
lems, equilibrium problems, etc., see [1, 4, 15, 17, 19, 24] and the references therein.
The main characteristic of the inertial method is that the new iterate process is pro-
duced by making use of two values of the previous iterative point. In 2001, Alvarez
and Attouch [1] studied the problem of approximating the null point of a maximal
monotone operator and proposed the following inertial proximal algorithm:{

yn = xn + αn(xn − xn−1),

xn+1 = (I + λT )−1yn,∀n ≥ 1.

Then, they obtained the weak convergence of the algorithm.
For these research, the ideas of this paper are as follows: this article introduce

a new shrinking projection iterative algorithm with inertial effects to solve problem
(1.1) for firmly nonexpansive-like mappings in the framework of p-uniformly con-
vex and uniformly smooth real Banach spaces. Meanwhile, the strong convergence
theorems of this algorithm are obtained without assumption of semi-compactness
on mappings. As applications, the results are utilized to split fixed point problems
and variational inclusion problems, split fixed point problem and equilibrium prob-
lems. Furthermore, some numerical examples are used to demonstrate and show
the efficiency of our main results. To this end, some basic properties and relevant
lemmas will be introduced in next section which will be used in the proof for the
convergence analysis of the proposed algorithm.
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2. Preliminaries
Throughout this paper, we use notations: → to denote the strong convergence and
⇀ to denote the weak convergence. The set of all fixed points of T is denoted by
F (T ).

Let E be a Banach space. A function δE : [0, 2] → [0, 1] is called the modulus
of convexity of E as follows:

δE(ε) = inf{1− ‖x+ y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.

A function ρE : [0,+∞] → [0,+∞], which is called the modulus of smoothness of
E as follows:

ρE(t) = sup{1
2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

Definition 2.1. A Banach space E is said to be

(I) uniformly convex if for any x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε,
there exists η = η(ε) > 0 for all ε ∈ (0, 2] such that ‖x+y

2 ‖ ≤ 1 − η. This is
equivalent to δE(ε) > 0, for all ε ∈ (0, 2].

(II) uniformly smooth if and only if limt→0
ρE(t)

t = 0.

A Banach space is called p-uniformly convex if there exists a constant c > 0
such that δE(ε) > cεp for all ε ∈ (0, 2], where the constant 1

c is called the p-
uniformly convexity constant. It is obvious that a p-uniformly convex Banach space
is uniformly convex. A Banach space is said to be q-uniformly smooth if there exists
a constant Cq > 0 such that ρE(t) ≤ Cqt

q for all t > 0, where Cq is the q-uniformly
smoothness constant. In addition, E is a p-uniformly convex and uniformly smooth
Banach space if and only if its dual E∗ is a q-uniformly smooth and uniformly
convex Banach space.

Let E be a Banach space with the dual E∗. The duality mapping Jp
E : E → 2E

∗

is defined by Jp
E(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}, p > 1, ∀x ∈ E.

Definition 2.2. For a Gâteaux differentiable convex function f : E → R, the
function

∆f (x, y) := f(y)− f(x)− 〈f ′(x), y − x〉, ∀x, y ∈ E (2.1)

is called the Bregman distance of x to y with respect to the function f .

In addition, the duality mapping Jp
E is the derivative of the function fp(x) =

1
p‖x‖

p. Then the Bregman distance with respect to fp can be written as

∆p(x, y) =
1

q
‖x‖p − 〈Jp

Ex, y〉+
1

p
‖y‖p

=
1

p
(‖y‖p − ‖x‖p) + 〈Jp

Ex, x− y〉

=
1

q
(‖x‖p − ‖y‖p)− 〈Jp

Ex− Jp
Ey, y〉.

Definition 2.3. Let C be a nonempty closed convex subset of a Banach space E.
The mapping T : C → E is said to be
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(I) left Bregman quasi-nonexpansive mapping if F (T ) 6= ∅ and

∆p(Tx, x
∗) ≤ ∆p(x, x

∗), ∀x ∈ C, x∗ ∈ F (T ); (2.2)

(II) firmly nonexpansive-like mapping if

〈Tx− Ty, Jp
E(x− Tx)− Jp

E(y − Ty)〉 ≥ 0, ∀x, y ∈ C. (2.3)

Obviously, if E is a Hilbert space, the firmly nonexpansive-like mapping reduce
to the firmly nonexpansive mapping, i.e., 〈Tx−Ty, x−y〉 ≥ ‖Tx−Ty‖2,∀x, y ∈ C.

Example 2.1. (1) Let E be a smooth, strictly convex and reflexive Banach space
and C be a nonempty closed convex subset of E. Then, the metric projection
PC is a firmly nonexpansive-like mapping.

(2) Let E be a real number space R with Euclidean norm. A mapping T :
[−10, 10] → [−10, 10] is defined by Tx = 1

4x, ∀x ∈ [−10, 10]. For any x, y ∈
[−10, 10], we easily get the following result

〈Tx− Ty, Jp
E(x− Tx)− Jp

E(y − Ty)〉 = 〈1
4
x− 1

4
y, (x− 1

4
x)3 − (y − 1

4
Ty)3〉

=
1

4
× (

3

4
)3(x− y)(x3 − y3)

=
1

4
× (

3

4
)3(x− y)2(x2 + xy + y2) ≥ 0,

which implies that T is a firmly nonexpansive-like mapping.

Let T : C → E be a mapping. A point u is said to be an asymptotic fixed point
of T if there exists a sequence {xn} in C such that xn ⇀ u and xn−Txn → 0. The
set of all asymptotic fixed points of T is denoted by F̂ (T ).

Lemma 2.1. Let E be a smooth, strictly convex and reflexive Banach space, and C
be a nonempty closed convex subset of E. T : C → E is a firmly nonexpansive-like
mapping. Then F (T ) is a closed convex subset of E and F̂ (T ) = F (T ).

Proof. In order to prove that F (T ) is a closed convex set, we assume that F (T ) is
nonempty. Let {xn} be a sequence in F (T ) such that xn → u. From the definition
of T , we have 〈xn − Tu,−Jp

E(u− Tu)〉 ≥ 0. This inequality is equivalent also to

‖u− Tu‖p ≤ 〈xn − u, Jp
E(Tu− u)〉 ≤ ‖xn − u‖‖u− Tu‖p−1.

Then we obtain ‖u − Tu‖ = 0 as n → ∞. This implies u = Tu. Hence, u ∈ F (T )
and F (T ) is closed.

Next, we show that F (T ) is convex. For any x, y ∈ F (T ) and t ∈ (0, 1), putting
u = tx+ (1− t)y. From the definition of T , we get 〈x− Tu,−Jp

E(u− Tu)〉 ≥ 0 and
〈y − Tu,−Jp

E(u− Tu)〉 ≥ 0. Combine the above two inequalities, we have

〈tx+ (1− t)y − Tu,−Jp
E(u− Tu)〉 ≥ 0 ⇔ 〈u− Tu,−Jp

E(u− Tu)〉 ≥ 0

⇔ ‖u− Tu‖p ≤ 0.

This means that u = Tu. So, F (T ) is closed and convex.
Last, we show that F̂ (T ) = F (T ). It is obvious that F (T ) ⊂ F̂ (T ). Then, we

only show that F̂ (T ) ⊂ F (T ). For any z ∈ F̂ (T ), there exists a sequence {xn} in C
such that xn ⇀ z and xn − Txn → 0. From the definition of T , we have

〈Txn − Tz, Jp
E(xn − Txn)− Jp

E(z − Tz)〉 ≥ 0.



2108 Z. Zhou, B. Tan & S. Li

This is equivalent to

〈Txn − Tz, Jp
E(xn − Txn)〉 ≥ 〈Txn − Tz, Jp

E(z − Tz)〉
= 〈Txn − z + z − Tz, Jp

E(z − Tz)〉
= 〈Txn − z, Jp

E(z − Tz)〉+ ‖z − Tz‖p.

The inequality can be transformed the following inequality

‖z − Tz‖p ≤ 〈z − Txn, J
p
E(z − Tz)〉+ 〈Txn − Tz, Jp

E(xn − Txn)〉
= 〈z − xn, J

p
E(z − Tz)〉+ 〈xn − Txn, J

p
E(z − Tz)〉

+ 〈Txn − xn, J
p
E(xn − Txn)〉+ 〈xn − Tz, Jp

E(xn − Txn)〉.

From the setting of n → ∞, we have ‖z − Tz‖ = 0. Hence, z = Tz, i.e., z ∈ F (T ).

Definition 2.4. Let C be a nonempty closed convex subset of a real Banach space
E. A mapping T : C → C is closed (or T has closed graph), that is, if the sequence
{xn} in C converges strongly to a point x ∈ C and Txn → y, then Tx = y.

Lemma 2.2 ( [13]). Let E be a Banach space and Jp
E be the duality mapping of E.

Then, the following statements hold:
(I) Jp

E(x) is nonempty bounded closed and convex, for any x ∈ E;
(II) If E is a reflexive Banach space, then Jp

E is a mapping from E onto E∗;
(III) If E is a smooth Banach space, then Jp

E is single valued;
(IV) If E is a uniformly smooth Banach space, then Jp

E is norm-to-norm uniformly
continuous on each bounded subset of E.

Remark 2.1. By the definition of ∆p, we easily obtain

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈z − y, Jp
Ex− Jp

Ez〉, ∀x, y, z ∈ E, (2.4)

and
∆p(x, y) + ∆p(y, x) = 〈x− y, Jp

Ex− Jp
Ey〉, ∀x, y, z ∈ E. (2.5)

In addition, it is easy to see from the above that the Bregman distance is not
symmetrical, and for p-uniformly convex Banach spaces, we have

τ‖x− y‖p ≤ ∆p(x, y) ≤ 〈x− y, Jp
Ex− Jp

Ey〉, ∀x, y ∈ E, τ > 0. (2.6)

This indicates that Bregman distance is non-negative.

Definition 2.5. ΠC : E → C is said to be the Bregman projection mapping, that
is,

ΠCx = argmin
y∈C

∆p(x, y), ∀x ∈ E. (2.7)

In other words, ΠCx corresponds a unique element x0 ∈ C such that

∆p(x, x0) = min
y∈C

∆p(x, y), ∀x ∈ E.

The Bregman projection can also be characterized by the following inequality

〈Jp
Ex− Jp

EΠCx, z −ΠCx〉 ≤ 0, ∀z ∈ C, (2.8)

this is equivalent to

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C. (2.9)
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Lemma 2.3 ( [30]). Let E be a q-uniformly smooth Banach space with the q-
uniformly smoothness constant Cq > 0. For any x, y ∈ E, the following inequality
holds:

‖x− y‖q ≤ ‖x‖q − q〈y, Jq
Ex〉+ Cq‖y‖q.

Lemma 2.4 ( [25]). Let E be a p-uniformly convex and uniformly smooth Banach
space and with its dual E∗, Jp

E and Jq
E∗ are the duality mappings of E and E∗,

respectively. For any {xn} ⊂ E, and {tn} ⊂ (0, 1) with ΣN
n=1tn = 1, the following

inequality holds. ∆p(J
q
E∗(

∑N
n=1 tnJ

p
E(xn)), x) ≤

∑N
n=1 tn∆p(xn, x), ∀x ∈ E.

Lemma 2.5. Let E be a p-uniformly convex and uniformly smooth real Banach
space, and C1 = E. Then, for any sequences {yn}, {zn} and {wn} in E, the set

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(zn, u) ≤ ∆p(wn, u)}

is closed and convex for each n ≥ 1.

Proof. First, since C1 = E, C1 is closed and convex. Then we assume that Cn is
a closed and convex. For each u ∈ Cn, by the definition of the function ∆p, we have

∆p(yn, u) ≤ ∆p(zn, u) ⇔ 2〈Jp
Ezn − Jp

Eyn, u〉 ≤
1

q
(‖zn‖p − ‖yn‖p),

and

∆p(zn, u) ≤ ∆p(wn, u) ⇔ 2〈Jp
Ewn − Jp

Ezn, u〉 ≤
1

q
(‖wn‖p − ‖zn‖p).

Hence, we know that Cn+1 is closed. In addition, we can easily prove that Cn+1 is
a convex. The proof is completed.

3. Main Results
In the section, we assume that the following conditions are satisfied:
(1) E1 and E2 are two p-uniformly convex and uniformly smooth real Banach

spaces;
(2) A : E1 → E2 is a bounded linear operator with adjoint operator A∗;
(3) T : E1 → E1 is a closed left Bregmen quasi-nonexpansive mapping;
(4) S : E2 → E2 is a firmly nonexpansive-like mapping.

In addition, Jp
E1

and Jp
E2

are the duality mappings of E1 and E2, respectively,
and Jq

E∗
1

is the duality mapping of E∗
1 . It is worth noting that E∗

1 and E∗
2 are

two q-uniformly smooth and uniformly convex Banach spaces, and Jp
E1

= (Jq
E∗

1
)−1,

where 1 < q ≤ 2 ≤ p < ∞ with 1
p + 1

q = 1.
Algorithm. For given initial values x0, x1 ∈ C1 = E1, the sequence {xn} gener-
ated by the following iterative algorithm:

wn = Jq
E∗

1
(Jp

E1
xn + θnJ

p
E1

(xn − xn−1)),

zn = Jq
E∗

1
(Jp

E1
wn − γnA

∗Jp
E2

(I − S)Awn),

yn = Jq
E∗

1
(αnJ

p
E1

zn + (1− αn)J
p
E1

Tzn),

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(zn, u) ≤ ∆p(wn, u)},
xn+1 = ΠCn+1

x0,

(3.1)
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where ΠCn+1
is a Bregman projection of E1 onto Cn+1, {γn} is a sequence of real

number in (0, ( q
Cq∥A∥q )

1
q−1 ), where 1

c is the p-uniformly convexity constant and Cq is
the q-uniformly smoothness constant, the sequences of real number {αn} ⊂ [a, b] ⊂
(0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞).

Lemma 3.1. Let E1, E2, T , S, A, A∗ and Jp
E1

, Jp
E2

, Jq
E∗

1
be the same as above. If

Γ = {x∗|x∗ ∈ F (T );Ax∗ ∈ F (S)}, then Γ ⊆ Cn for any n ≥ 1.

Proof. If Γ = ∅, it is obvious that Γ ⊆ Cn. Conversely, for any x∗ ∈ Γ, we have
x∗ ∈ F (T ) and Ax∗ ∈ F (S). According to Lemma 2.4 and the definition of left
Bregman quasi-nonexpansive mapping T , we easily obtain

∆p(yn, x
∗) = ∆p(J

q
E∗

1
(αnJ

p
E1

zn + (1− αn)J
p
E1

Tzn), x
∗)

≤ αn∆p(zn, x
∗) + (1− αn)∆p(Tzn, x

∗)

≤ ∆p(zn, x
∗).

(3.2)

Since E1 is a p-uniformly convex and uniformly smooth real Banach space,
then E∗

1 is a q-uniformly smooth and uniformly convex Banach space and Jp
E1

=

(Jq
E∗

1
)−1. From the property of firmly nonexpansive-like mapping S, we easily obtain

〈Jp
E2

(I − S)Awn, Ax∗ − SAwn〉 ≤ 0. Further, we have

〈Jp
E2

(I − S)Awn, Ax∗ −Awn〉 = 〈Jp
E2

(I − S)Awn, Ax∗ − SAwn + SAwn −Awn〉
= −‖(I−S)Awn‖p+〈Jp

E2
(I−S)Awn, Ax∗−SAwn〉

≤ −‖(I − S)Awn‖p. (3.3)

Again from (2.9), (3.3) and Lemma 2.3, we obtain

∆p(zn, x
∗) = ∆p(J

q
E∗

1
(Jp

E1
wn − γnA

∗Jp
E2

(I − S)Awn), x
∗)

=
1

q
‖Jq

E∗
1
(Jp

E1
wn − γnA

∗Jp
E2

(I − S)Awn)‖p +
1

p
‖x∗‖p

− 〈Jp
E1

wn − γnA
∗Jp

E2
(I − S)Awn, x

∗〉

=
1

q
‖Jp

E1
wn − γnA

∗Jp
E2

(I − S)Awn‖q +
1

p
‖x∗‖p

− 〈Jp
E1

wn, x
∗〉+ γn〈Jp

E2
(I − S)Awn, Ax∗〉

≤ 1

q
‖Jp

E1
wn‖q +

1

p
‖x∗‖p − 〈Jp

E1
wn, x

∗〉 − γn〈Jp
E2

(I − S)Awn, Awn〉

+ γn〈Jp
E2

(I − S)Awn, Ax∗〉+ Cq(γn‖A‖)q

q
‖Jp

E2
(I − S)Awn‖q

= ∆p(wn, x
∗) + γn〈Jp

E2
(I − S)Awn, Ax∗ −Awn〉

+
Cq(γn‖A‖)q

q
‖(I − S)Awn‖p.

Since {γn} is a real number sequence contained in (0, ( q
Cq∥A∥q )

1
q−1 ), we get

∆p(zn, x
∗) ≤ ∆p(wn, x

∗)+ (
Cq(γn‖A‖)q

q
−γn)‖(I−S)Awn‖p ≤ ∆p(wn, x

∗). (3.4)

From (3.2) and (3.4), we have x∗ ∈ Cn+1, that is, Γ ⊆ Cn, ∀n ≥ 1.
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Theorem 3.1. Let E1, E2, T , S, A, A∗ and Jp
E1

, Jp
E2

, Jq
E∗

1
be the same as above.

If Γ = {x∗|x∗ ∈ F (T );Ax∗ ∈ F (S)} 6= ∅, the sequence {xn} generated by Algorithm
(3.1) converges strongly to a point z = ΠΓx0 ∈ Γ.

Proof. By Lemma 2.5 and Lemma 3.1, we know that ΠCn+1
x0 is well defined and

Γ ⊆ Cn. According to Algorithm (3.1), we know xn = ΠCn
x0 and xn+1 = ΠCn+1

x0

for each n ≥ 1. Using Γ ⊆ Cn and (2.9), we have

∆p(x0, xn) = ∆p(x0,ΠCn
x0) ≤ ∆p(x0, x

∗), x∗ ∈ Γ, ∀n ≥ 1. (3.5)

It implies that {∆p(x0, xn)} is bounded. Reusing (2.9), we also have

∆p(xn, xn+1) = ∆p(ΠCnx0, xn+1) ≤ ∆p(x0, xn+1)−∆p(x0,ΠCnx0)

= ∆p(x0, xn+1)−∆p(x0, xn).
(3.6)

It follows that {∆p(x0, xn)} is nondecreasing. Hence, lim
n→∞

∆p(x0, xn) exists, and

lim
n→∞

∆p(xn, xn+1) = 0. (3.7)

It follows from (2.6) that
lim
n→∞

‖xn+1 − xn‖ = 0. (3.8)

For some positive integers m, n with m ≥ n, we have xm = ΠCm
x1 ⊆ Cn. Using

(2.9), we obtain

∆p(xn, xm) = ∆p(ΠCnx0, xm) ≤ ∆p(x0, xm)−∆p(x0,ΠCnx0)

= ∆p(x0, xm)−∆p(x0, xn).
(3.9)

Since lim
n→∞

∆p(x0, xn) exists, it follows from (3.9) that lim
n→∞

∆p(xn, xm) = 0 and
lim
n→∞

‖xm − xn‖ = 0. Therefore, {xn} is a Cauchy sequence. Further, there exists a
point z ∈ C such that xn → z.

From Algorithm (3.1), Definition 2.2 and Lemma 2.3, we have

∆p(wn, x
∗) =

1

q
‖Jq

E∗
1
(Jp

E1
xn + θnJ

p
E1

(xn − xn−1))‖p +
1

p
‖x∗‖p

− 〈Jp
E1

xn + θnJ
p
E1

(xn − xn−1), x
∗〉

=
1

q
‖Jp

E1
xn + θnJ

p
E1

(xn − xn−1)‖q +
1

p
‖x∗‖p

− 〈Jp
E1

xn, x
∗〉 − θn〈Jp

E1
(xn − xn−1), x

∗〉

≤ 1

q
‖Jp

E1
xn‖q +

1

p
‖x∗‖p − 〈Jp

E1
xn, x

∗〉 − θn〈Jp
E1

(xn − xn−1), x
∗〉

+ θn〈Jp
E1

(xn − xn−1), xn〉+
Cq(θn)

q

q
‖Jp

E1
(xn − xn−1)‖q

=
1

q
‖xn‖p +

1

p
‖x∗‖p − 〈Jp

E1
xn, x

∗〉 − θn〈Jp
E1

(xn − xn−1), x
∗〉

+ θn〈Jp
E1

(xn − xn−1), xn〉+
Cq(θn)

q

q
‖xn − xn−1‖p

= ∆p(xn, x
∗) + θn〈Jp

E1
(xn − xn−1), xn − x∗〉

+
Cq(θn)

q

q
‖xn − xn−1‖p.

(3.10)
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By virtue of Remark 2.1 and the definition of wn, we know

∆p(wn, x
∗) = ∆p(wn, xn) + ∆p(xn, x

∗) + 〈xn − x∗, Jp
E1

wn − Jp
E1

xn〉
= ∆p(wn, xn) + ∆p(xn, x

∗) + θn〈xn − x∗, Jp
E1

(xn − xn−1)〉.
(3.11)

By (3.10) and (3.11), we get ∆p(wn, xn) ≤ Cq(θn)
q

q ‖xn − xn−1‖p. Then, using
(2.6), (3.8) and the boundedness of the sequence {θn}, we can obtain

lim
n→∞

‖wn − xn‖ = 0. (3.12)

Using a similar method, we can get

∆p(wn, xn+1) = ∆p(wn, xn) + ∆p(xn, xn+1) + 〈xn − xn+1, J
p
E1

wn − Jp
E1

xn〉.

By setting n → ∞, we have

lim
n→∞

‖wn − xn+1‖ = 0. (3.13)

Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊆ Cn, we have

∆p(yn, xn+1) ≤ ∆p(zn, xn+1) ≤ ∆p(wn, xn+1).

According to (3.13), we obtain

lim
n→∞

∆p(yn, xn+1) = 0, lim
n→∞

∆p(zn, xn+1) = 0, (3.14)

which implies that lim
n→∞

‖yn − xn+1‖ = 0, lim
n→∞

‖zn − xn+1‖ = 0. Hence

‖xn − zn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − zn‖ → 0 as n → ∞, (3.15)
‖yn − zn‖ ≤ ‖xn+1 − yn‖+ ‖xn+1 − zn‖ → 0 as n → ∞. (3.16)

In addition, since E1 is a p-uniformly convex and uniformly smooth real Banach
space, then Jp

E1
is uniformly norm-to-norm continuous. It follows from Algorithm

(3.1) and real number sequence {αn} in [a, b] ⊂ (0, 1) that

lim
n→∞

‖Jp
E1

Tzn − Jp
E1

zn‖ = lim
n→∞

1

1− αn
‖Jp

E1
yn − Jp

E1
zn‖ = 0,

which also implies that lim
n→∞

‖Tzn − zn‖ = 0. By virtue of (3.12) and xn → z we
have zn → z. Using the closedness of T , we obtain zn → z and Tz = z. From (2.6),
(3.4) and (3.15), we have

(γn − Cq(γn‖A‖)q

q
)‖(I − S)Awn‖p ≤ ∆p(wn, x

∗)−∆p(zn, x
∗)

=
1

q
‖wn‖p −

1

q
‖zn‖p − 〈Jp

E1
wn − Jp

E1
zn, x

∗〉

= ∆p(wn, zn) + 〈Jp
E1

wn − Jp
E1

zn, zn − x∗〉
≤ (‖wn − zn‖+ ‖zn − x∗‖)‖Jp

E1
wn − Jp

E1
zn‖.
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By setting of n → ∞, the right-hand side of last inequality tends to 0. Moreover,
{γn} is a real number sequence contained in (0, ( q

Cq∥A∥q )
1

q−1 ), we have

lim
n→∞

‖(S − I)Awn‖ = 0.

Since A is a bounded linear operator, we have Awn → Az. Again according to
Definition 2.3 and Lemma 2.1, we get Az ∈ F (T ). Then, from (2.8) and (3.1), we
have

〈Jp
E1

x0 − Jp
E1

xn, p− xn〉 ≤ 0, ∀p ∈ Γ. (3.17)

By setting n → ∞ in (3.17), we obtain

〈Jp
E1

x0 − Jp
E1

z, p− z〉 ≤ 0, ∀p ∈ Γ. (3.18)

Again from (2.8), we have z = ΠΓx0. Definitively, we obtain that {xn} generated
by Algorithm (3.1) strong converge z = ΠΓx0 ∈ Γ. The proof is completed.

Remark 3.1. The significant improvement of the results in this paper is using the
shrinking projection algorithm with inertial effects to study the split common fixed
problem in the framework of two p-uniformly convex and uniformly smooth Banach
spaces, and the iterative sequence generated by Algorithm (3.1) strongly converges
to a solution of the split common fixed point problem.

Remark 3.2. The field of study in this paper is the p-uniformly convex and uni-
formly smooth Banach space, which is more extensive than the Hilbert space [26–28],
the uniformly convex and 2-uniformly smooth Banach space [29] and the 2-uniformly
convex and 2-uniformly smooth real Banach space [25]. The split common fixed
point problem of firmly nonexpansive-like mappings in Theorem 3.1 is more general
than the split feasibility problem and fixed point problem in [18,25].

As a corollary of Theorem 3.1, when E1 and E2 reduce to Hilbert spaces, the
function ∆p is equal to ∆p(x, y) = 1

2‖x − y‖2 and the Bregman projection ΠC is
equivalent to the metric projection PC . Then, we obtain the following corollary.

Corollary 3.1. Let H1 and H2 be two real Hilbert spaces. Let T : H1 → H1

be a closed quasi-nonexpansive mapping, S : H2 → H2 be a firmly nonexpansive
mapping, and A : H1 → H2 be a bounded linear operator with adjoint operator
A∗. For given initial values x0, x1 ∈ C1 = H1, the sequence {xn} generated by the
following iterative algorithm:

wn = xn + θn(xn − xn−1),

zn = wn − γnA
∗(I − S)Awn,

yn = αnzn + (1− αn)Tzn,

Cn+1 = {u ∈ Cn : ‖yn − u‖ ≤ ‖zn − u‖ ≤ ‖wn − u‖},
xn+1 = PCn+1x0,

(3.19)

where PCn+1 is a metric projection of H1 onto Cn+1, the sequences of real numbers
{γn} ⊂ (0, 2

∥A∥2 ), {αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞). If Γ =

{x∗|x∗ ∈ F (T ), Ax∗ ∈ F (S)} 6= ∅, the sequence {xn} generated by (3.19) converges
strongly to a point z = PΓx0 ∈ Γ.
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4. Applications
4.1. Split fixed point problems and variational inclusion prob-

lems
Let H be a real Hilbert space and B : H → 2H be a set-valued mapping with
domain D(B) := {x ∈ H : B(x) 6= ∅}. An operator B : H → 2H is called monotone
if 〈u − v, x − y〉 ≥ 0, ∀u ∈ Bx, v ∈ By. Further, B is called maximal monotone if
its graph G(B) = {(x, y) : x ∈ D(B), y ∈ D(B)} is not properly contained in the
graph of any other monotone operator.

The problem of zero points of maximal monotone operator is

finding x∗ ∈ H, such that 0 ∈ B(x∗),

where B : H → 2H is a set-valued maximal monotone operator. Martinet [20] first
proposed proximal point algorithm to solve the problem of a zero point of maximal
monotone operator.

Lemma 4.1 ( [23]). Let H be a real Hilbert space. Let B : H → 2H be a maximal
monotone operator and µ > 0, and its associated resolvent of order µ, defined by
JB
µ = (I + µA)−1, where I denotes the identity mapping. Then, the following

properties are true:

(I) For each µ > 0, JB
µ is a sing-valued and firmly nonexpansive mapping;

(II) D(JB
µ ) = H and F (JB

µ ) = B−1(0) := {x ∈ D(B), 0 ∈ Bx}.

Definition 4.1. Let H1 and H2 be two Hilbert spaces, and A : H1 → H2 be a
bounded linear operator. Let B : H1 → 2H1 and K : H2 → 2H2 be two set-
valued mappings, T : H1 → H1 be a mapping. The split fixed point problem and
variational inclusion problem is to find a point x∗ such that

x∗ ∈ F (T ) ∩K−1(0), Ax∗ ∈ B−1(0).

For this problem, we propose the following theorem by the result in Theorem 3.1.

Theorem 4.1. Let H1 and H2 be two Hilbert spaces, and A : H1 → H2 be a bounded
linear operator with adjoint operator A∗. Let B : H1 → 2H1 and K : H2 → 2H2

be two maximal monotone operators and µ > 0, T : H1 → H1 be a closed quasi-
nonexpansive mapping. For given initial values x0, x1 ∈ C1 = H1, the sequence
{xn} generated by the following iterative algorithm:

wn = xn + θn(xn − xn−1),

zn = wn − γnA
∗(I − JB

µ )Awn,

yn = αnzn + (1− αn)TJ
K
µ zn,

Cn+1 = {u ∈ Cn : ‖yn − u‖ ≤ ‖zn − u‖ ≤ ‖wn − u‖},
xn+1 = PCn+1

x0,

(4.1)

where PCn+1
is a metric projection of H1 to Cn+1, the sequences of real numbers

{γn} ⊂ (0, 2
∥A∥2 ), {αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞). If Γ =

{x∗|x∗ ∈ F (T ) ∩ K−1(0), Ax∗ ∈ B−1(0)} 6= ∅, the sequence {xn} generated by
iterative algorithm (4.1) converges strongly to a point z = PΓx0 ∈ Γ.
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Proof. It is obvious that TJK
µ is closed quasi-nonexpansive mapping from the

property of T and Lemma 4.1. Hence, the strong convergence theorem of iterative
algorithm (4.1) is obviously proved.

4.2. Split fixed point problems and equilibrium problems
Let C be a nonempty closed and convex subset of a Hilbert space H. Let bifunction
F : C × C → R satisfy the following conditions:

(A1) F (x, x) = 0, ∀x ∈ C;
(A2) F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;
(A3) limn→∞ F (tz + (1− t)x, y) ≤ F (x, y), ∀x, y, z ∈ C;
(A4) For each x ∈ C, the function y 7→ F (x, y) is convex and lower semi-continuous.

Then, the so-called equilibrium problem for F is to find a point x∗ ∈ C such that
F (x∗, x) ≥ 0, ∀x ∈ C, and the set of solutions of equilibrium problem is denoted by
EP (F ).

Lemma 4.2 ( [14]). Let C be a nonempty closed convex subset of a Hilbert space
H, and let F : C × C → R be a bifunction satisfying (A1)-(A4). Let r > 0 and
x ∈ H. Then there exists a point z ∈ C such that F (z, y) + 1

r 〈y − z, z − x〉 ≥ 0,
∀y ∈ C.

Lemma 4.3 ( [14]). Assume that F : C × C → R be a bifunction satisfying (A1)-
(A4). For r > 0 and x ∈ H, define a mapping TF

r : H → H as follows: TF
r (x) =

{z ∈ C : F (z, y) + 1
r 〈y − z, z − x〉 ≥ 0,∀y ∈ C}, ∀x ∈ H. Then

(1) TF
r is single-valued;

(2) ‖TF
r x− TF

r y‖2 ≤ 〈TF
r x− TF

r y, x− y〉;
(3) F (TF

r ) = EP (F ) is nonempty, closed and convex.

Definition 4.2. Let C and Q be two nonempty closed convex subsets of real Hilbert
spaces H1 and H2, respectively, and A : H1 → H2 be a bounded linear operator,
T : C → C be a mapping, F : C × C → R be a bifunction satisfying (A1)-(A4).
The split fixed point problem and equilibrium problem is to find a point x∗ such
that

x∗ ∈ F (T ), Ax∗ ∈ EP (F ).

Theorem 4.2. Let C and Q be two nonempty closed convex subsets of real Hilbert
spaces H1 and H2, respectively, T : C → C be a closed quasi-nonexpansive mapping,
F : C×C → R be a bifunction satisfying (A1)-(A4), and A : H1 → H2 be a bounded
linear operator with adjoint operator A∗. For given initial values x0, x1 ∈ C1 = C,
the sequence {xn} generated by the following iterative algorithm:

wn = xn + θn(xn − xn−1),

zn = PC(wn − γnA
∗(I − TF

r )Awn),

yn = αnzn + (1− αn)Tzn,

Cn+1 = {u ∈ Cn : ‖yn − u‖ ≤ ‖zn − u‖ ≤ ‖wn − u‖},
xn+1 = PCn+1

x0,

(4.2)
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where PCn+1
is a metric projection of H1 onto Cn+1, the sequences of real numbers

{γn} ⊂ (0, 2
∥A∥2 ), {αn} ⊂ [a, b] ⊂ (0, 1) and {θn} ⊂ [c, d] ⊂ (−∞,+∞). If Γ =

{x∗|x∗ ∈ F (T ), Ax∗ ∈ EP (F )} 6= ∅, the sequence {xn} generated by iterative
algorithm (4.2) converges strongly to a point z = PΓx0 ∈ Γ.

5. Numerical examples
In this section, we come up with some numerical examples to demonstrate the
effectiveness and realization of convergence of Theorem 3.1. All codes were written
in Matlab R2018b, and ran on a Lenovo ideapad 720S with 1.6 GHz Intel Core
i5 processor and 8GB of RAM. Using numerical experiments, we will compare the
convergence speed of our algorithm with the algorithm in [18]. Ma et al. [18] proved
strong convergence theorems of split feasibility problems and fixed point problems
of quasi-ϕ-nonexpansive mapping in Banach spaces and introduced the following
algorithm.

Theorem 5.1 ( [18]). Let E1 be a 2-uniformly convex and 2-uniformly smooth real
Banach space with best smoothness constant k > 0, E2 be a smooth, strictly convex,
and reflective Banach space. Let T : E1 → E1 be a closed quasi-ϕ-nonexpansive
mapping with F (T ) 6= ∅, A : E1 → E1 be a bounded linear operator with adjoint A∗,
and Q be a nonempty, closed, and convex subset of E2. Let x1 ∈ E1 and C1 = E1,
and {xn} be a sequence generated by

zn = J−1
1 (J1xn − γA∗J2(I − PQ)Axn),

yn = J−1
1 (αnJ1zn + (1− αn)J1Tzn),

Cn+1 = {u ∈ Cn : ϕ(u, yn) ≤ ϕ(u, xn), ϕ(u, zn) ≤ ϕ(u, xn)},
xn+1 = ΠCn+1x1,

where PQ is the metric projection of E2 onto Q and ΠCn+1 is the generalized
projection of E1 onto Cn+1, {αn} is a sequence in (0, δ], δ < 1, and γ is a positive
constant satisfying 0 < γ < 1

∥A∥2k2 . If Γ = {x∗|x∗ ∈ F (T ), Ax∗ ∈ Q} 6= ∅, then the
sequence {xn} converges strongly to a point z = ΠΓx1.

To make sure the initial conditions of Theorem 5.1 and Theorem 3.1 are consis-
tent, the initial conditions are given as follows:

Let E1 = R and E2 = R × R with the Euclidean norm, and C = [0,+∞) and
Q = [0,+∞)× (−∞, 0]. Let A : E1 → E2 be a bounded linear operator and defined
as Ax = (x2 ,

x
3 ), ∀x ∈ E1 with its adjoint A∗(u, v) = u

2 + v
3 , ∀(u, v) ∈ E2.

Example 5.1 (Ma et al.). Let T : C → C be defined as Tx = 1
4x, ∀x ∈ C, and

PQ : E2 → Q be a metric projection. In addition, we choose parameters γ = 1,
αn = 1

7 . For given initial value x1 ∈ C1 = C, the iterative algorithm in Theorem
5.1 can be simplified as

Axn = (
xn

2
,
xn

3
),

zn = xn −A∗(I − PQ)Axn,

yn =
1

7
zn + (1− 1

7
)Tzn,

Cn+1 = {u ∈ Cn : |yn − u| ≤ |xn − u|, |zn − u| ≤ |xn − u|},
xn+1 = PCn+1

x1.
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Then, the sequence {xn} converges strongly 0.

Example 5.2 (Our algorithm with inertial effects in Theorem 3.1). Let T : C → C
be defined as Tx = 1

4x, ∀x ∈ C, and S = PQ : E2 → Q be a metric projection. In
addition, we choose parameters γn = 1, αn = 1

7 and θn = 1
2 . For given initial values

x0 = x1 ∈ C1 = C, the iterative algorithm in Theorem 3.1 can be simplified as

wn = xn +
1

2
(xn − xn−1),

zn = wn −A∗(I − PQ)Awn,

yn =
1

7
zn + (1− 1

7
)Tzn,

Cn+1 = {u ∈ Cn : |yn − u| ≤ |zn − u| ≤ |wn − u|},
xn+1 = PCn+1

x0.

Then, the sequence {xn} converges strongly to 0.
Next, taking initial values x1 = 6, x1 = 3 in Example 5.1 and x0 = x1 = 6,

x0 = x1 = 3 in Example 5.2. We get the following Table 1 and Figure 1 to
demonstrate rate of convergence of the algorithms in Theorem 5.1 and Theorem 3.1.

Table 1. Numerical results of Theorem 5.1 and Theorem 3.1

n
Ma et al. Algorithm 3.1

x1 = 6 x1 = 3 x0 = x1 = 6 x0 = x1 = 3

0 / / 6 3
1 6 3 6 3
2 3.952380952380953 1.976190476190476 3.619047619047619 1.809523809523809
3 2.603552532123961 1.301776266061980 1.895691609977324 0.947845804988662
4 1.715038572748323 0.857519286374162 0.935536119209588 0.467768059604794
5 1.129747631254848 0.564873815627424 0.448463346033803 0.224231673016901
6 0.744198836461527 0.372099418230763 0.211743715446802 0.105871857723401
...

...
...

...
...

21 0.001420045289491 0.000710022644746 0.000002127155711 0.000001063577855
22 0.000935426658951 0.000467713329475 0.000000986132411 0.000000493066206
23 0.000616193751531 0.000308096875766 0.000000457162771 0.000000228581385
24 0.000405905407755 0.000202952703877 0.000000211936762 0.000000105968381
25 0.000267382133680 0.000133691066840 0.000000098252052 0.000000049126026
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Figure 1. Analysis of convergence speed of Theorem 5.1 and Theorem 3.1
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It is worth noting that γn, αn and θn are only constant step-size and initial
point x0 = x1(there is no using an inertial effect in the first iterative process) in
Example 5.2. To change this, we consider the following four cases of the step-size
parameters γn, αn and θn, with the initial points x0 = 8, x1 = 6.

Case 1: γn = 1, αn = 1
7 and θn = 1

2 ;

Case 2: γn = 2n+3
2n , αn = 1

7 and θn = 1
2 ;

Case 3: γn = 2n+3
2n , αn = n

7n+5 and θn = 1
2 ;

Case 4: γn = 2n+3
2n , αn = n

7n+5 and θn = 2n+1
10n+2 .

Table 2. Numerical results of Case1-4
n Case 1 Case 2 Case 3 Case 4
0 8 8 8 8
1 6 6 6 6
2 3.377777777777778 2.744444444444444 2.654166666666667 2.606770833333333
3 1.721058201058201 1.144272486772487 1.062511878654971 0.982533042700857
4 0.838240362811792 0.466087018140590 0.414427676387483 0.349299329383015
5 0.399106638351990 0.189975923807574 0.161779387393689 0.121333554378606
6 0.187756126213986 0.078232012035175 0.063949280327919 0.042025571691499
...

...
...

...
...

21 0.000001877748043 0.000000362109760 0.000000229101124 0.000000057064087
22 0.000000870508717 0.000000164098265 0.000000103109472 0.000000025326458
23 0.000000403560514 0.000000074452809 0.000000046477831 0.000000011270697
24 0.000000187087193 0.000000033815734 0.000000020979640 0.000000005027255
25 0.000000086732002 0.000000015373490 0.000000009481898 0.000000002246927

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Figure 2. Analysis of convergence speed of Case1-4

Remark 5.1. (I) From Figure 1 and Table 1, we found that the convergence rate
of the algorithm in Theorem 3.1 is faster than the algorithm in Theorem 5.1.
This also shows the efficiency of our proposed Algorithm (3.1) in this paper.

(II) From Figure 2 and Table 2, we know that the convergence speed of the
algorithm in Theorem 3.1 is improved under suitable condition of step-size.
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