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Abstract
In the framework of Hilbert spaces, we study the solutions of split common fixed point prob-
lems. A new accelerated self-adaptive stepsize algorithm with excellent stability is proposed
under the effects of inertial techniques and Meir–Keeler contraction mappings. The strong
convergence theorems are obtained without prior knowledge of operator norms. Finally, in
applications, our main results in this paper are applied to signal recovery problems.

Keywords Self-adaptive stepsize · Meir–Keeler contraction · Inertial technique · Signal
recovery

Mathematics Subject Classification 47H10 · 47J25 · 65K10 · 65Y10

1 Introduction

Based on the idea of the split feasibility problem (for short, SFP), Censor and Segal (2009)
introduced the split common fixed point problem (for short, SCFPP) in 2009 as follows. Let
H1 and H2 be Hilbert spaces, T : H1 → H1 and S : H2 → H2 be nonlinear mappings,
F(T ) and F(S) denote the fixed point sets of T and S, respectively, and A : H1 → H2 be a
bounded linear operator. The split common fixed point problem is to find:

x∗ ∈ F(T ) and Ax∗ ∈ F(S). (1.1)

Under certain conditions, when T = PC and S = PQ (PC and PQ aremetric projections from
H1 to its nonempty closed convex subset C and H2 to its nonempty convex closed subset Q,
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respectively). The problem (1.1) can be considered as the split feasibility problems, which
is to find a point x∗ ∈ C and Ax∗ ∈ Q. This problem was introduced by Censor and Elfving
(1994).

Naturally, x∗ is a solution of the split common fixed point problem if and only if x∗ is a
solution of the equation x∗ = T (I − β A∗(I − S)A)x∗, where A∗ is an adjoint operator of
A. Furthermore, Censor and Segal (2009) proposed an algorithm to approximate a solution
of the problem (1.1) in finite-dimensional Euclidean spaces by the recursive procedure:
xn+1 = T (I − β AT(I − S)A)xn , where T and S are directed operators, AT is the matrix
transposition of A, M is the largest eigenvalue of matrix AT A and β ∈ (0, 2/M). By the
proposed algorithm, they obtained that the iterative sequence {xn} converges to a solution
of the problem (1.1). In addition, the split feasibility problem and the split common fixed
point problem have been widely studied in many mathematical problems, such as variational
inequality problems, equilibrium problems, monotone inclusion problems, etc. (see Censor
et al. 2012; Cho and Kang 2012; Chang et al. 2018; Majee and Nahak 2018; Shehu and
Agbebaku 2018; Qin and Yao 2019). They are also applied to many real problems, such as
medical imaging, astronomy, compressed sensing, radiation therapy treatment planning, and
remote sensing (see Chambolle and Lions 1997; Nikolova 2004; Qin and An 2019; An et al.
2020). Furthermore, such an algorithm in Censor and Segal (2009) was widely extended to
various operators, such as quasi-nonexpansive operators and demicontractive operators (see
Moudafi 2010, 2011; Cui and Wang 2014). Unfortunately, the weak convergence results of
these studies were only guaranteed.

To obtain strong convergence properties, some algorithms were considered by combin-
ing Halpern algorithms and viscosity algorithms under mild conditions, see, for example,
Boikanyo (2015), Kraikaew and Saejung (2014), and He et al. (2016). The viscosity
algorithm was introduced by Moudafi (2000) and the strong convergence was obtained
using contraction mappings. Before that, Meir and Keeler (1969) introduced Meir–Keeler
contraction as follows. Let (X , d) be a metric space. ξ : X → X is a Meir–Keeler con-
traction mapping if and only if, for each ε > 0, there exists a number δ > 0, such that
d(x, y) < ε + δ ⇒ d(ξ(x), ξ(y)) < ε, ∀x, y ∈ X . Obviously, the contraction mapping can
also be regarded as a special case of the Meir–Keeler contraction mapping. On the contrary,
it is not true. After this, the Meir–Keeler contraction mapping is also widely studied (for
more details, see Suzuki 2007; Karpagam and Agrawal 2011; Vaish and Ahmad 2020 and
the references therein). As a promotion, Wang (2017) and Yao et al. (2018) studied the new
iterative algorithm xn+1 = xn − βn[(I − T ) + A∗(I − S)A)]xn, ∀n ≥ 1, where {βn} is
a self-adaptive stepsize sequence. On the other hand, to achieve better convergence rate of
iterative algorithms, the inertial effects have been studied recently in Alvarez and Attouch
(2001), Maingé andMoudafi (2008) and the references therein. Based on the work in Alvarez
and Attouch (2001), Meir and Keeler (1969), Wang (2017), and Yao et al. (2018), we will
consider the following questions.

Can we combine the inertial technique and the Meir–Keeler contraction to build a new iter-
ative algorithm for solving the problem (1.1)? Can we find a self-adaptive stepsize sequence
to ensure the effectiveness of this algorithm?

For these questions, in this paper, we come up with a new modified algorithm by the
inertial technique and theMeir–Keeler contraction in the framework of infiniteHilbert spaces.
The strong convergence of this algorithm for the problem (1.1) is obtained without prior
knowledge of operator norms. It is worth noting that excellent stability and better convergence
rate of our algorithm are guaranteed by the proposed self-adaptive stepsize. Furthermore,
some numerical experiments are used to demonstrate and show the efficiency of our main
results.
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The organization of this paper is as follows. Some basic properties and relevant lemmas
are introduced in Sect. 2 and used in the proof for the main results of this paper in Sect. 3.
Some theoretical applications are also proposed in Sect. 4. Finally, in Sect. 5, some numerical
experiments demonstrate the validity and authenticity of our results.

2 Preliminaries

For the convenience and standard in the rest of this paper, the notations → and ⇀ denote
strong convergence and weak convergence, respectively. The fixed point set of a mapping T
is marked as F(T ). Some well-known basic properties are stated as follows.

(P1) The metric projection from H onto C is represented by PC , that is:

PC x = argminy∈C ‖x − y‖, ∀x ∈ H .

It also have the following equivalent forms:

〈PC x − x, PC x − y〉 ≤ 0,∀y ∈ C ⇔ ‖y − PC x‖2 + ‖x − PC x‖2 ≤ ‖x − y‖2.
(P2) The mapping T : H → H and F(T ) = ∅. I − T is demiclosed at zero if and only if

∀ {xn} ⊂ H , {xn} converges weakly to x , and (I − T )xn converges strongly to 0, then
x ∈ F(T ).

(P3) For any x, y ∈ H , the following properties hold:

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 ≤ ‖x‖2 + 2〈y, x + y〉,
‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2, ∀λ ∈ R.

A mapping T : H → H is said to be:

– contraction if there exists a constant α ∈ [0, 1), such that:

‖T x − T y‖ ≤ α‖x − y‖, ∀x, y ∈ H .

– nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ H .

– quasi-nonexpansive if F(T ) = ∅ and

‖T x − p‖ ≤ ‖x − p‖, ∀x ∈ H , p ∈ F(T ).

– strictly pseudo-contractive if there exists k ∈ [0, 1), such that:
‖T x − T y‖2 ≤ ‖x − y‖2 + k‖x − T x − (y − T y)‖2, ∀x, y ∈ H .

– pseudo-contractive if

‖T x − T y‖2 ≤ ‖x − y‖2 + ‖x − T x − (y − T y)‖2, ∀x, y ∈ H .

– directed if F(T ) = ∅ and

‖T x − p‖2 ≤ ‖x − p‖2 − ‖T x − x‖2, ∀x ∈ H , p ∈ F(T ).

– demicontractive if there exists a number k ∈ (−∞, 1) and F(T ) = ∅, such that:
‖T x − p‖2 ≤ ‖x − p‖2 + k‖T x − x‖2,
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or equivalently

〈x − p, x − T x〉 ≥ 1 − k

2
‖x − T x‖2.

Remark 2.1 From the definition of the mentioned mappings, we get the following relation-
ships:

contraction ⇒ nonexpansive ⇒ strictly pseudo-contractive

⇒ pseudo-contractive.

If F(T ) = ∅, the following relationships hold:

pseudo-contractive −−−−→ demicontractive
�
⏐
⏐

�
⏐
⏐

strictly pseudo-contractive ←−−−− directed.

Here, we give an example of Meir–keeler contraction mapping as follows.

Example 2.1 Let X = [0, 1]⋃{2, 3, 4, 5, . . . , 2n, 2n + 1, . . .} with Euclidean distance.
Define a mapping f : X → R by:

f (x) =

⎧

⎪
⎨

⎪
⎩

x
3 , 0 ≤ x ≤ 1,

0, x = 2n(n = 1, 2, . . .),

1 − 1
n , x = 2n + 1(n = 1, 2, . . .).

By the definition of f above, it can be seen that f is not a contraction (since a number
α ∈ [0, 1) in the definition of the contraction mapping cannot be found). Besides, for any
ε ≥ 1 and δ > 0, i.e., |x − y| < ε + δ, we easily know that | f (x) − f (y)| < ε, ∀x, y ∈ X .
On the other hand, for 0 < ε < 1, put δ ∈ (0,min{1− ε, 2ε}), i.e., |x − y| < ε + δ, we have
| f (x) − f (y)| < ε. In summary, the mapping f is a Meir–keeler contraction.

Lemma 2.1 (Meir and Keeler 1969) Let B be a Banach space and C be a closed convex
subset of B. ξ : C → C is a Meir–Keeler contraction mapping if and only if for any ε > 0,
there exists a number αε > 0, such that ‖x − y‖ ≥ ε implies ‖ξ(x) − ξ(y)‖ ≤ αε‖x − y‖.

Lemma 2.2 (Takahashi 2017) Let H be a Hilbert space and C be a closed convex subset of
H, T : C → H be a demicontractive mapping with k ∈ (−∞, 1). Then, F(T ) is closed and
convex.

Lemma 2.3 (Marino and Xu 2007; Zhou 2008) Let C be a nonempty closed convex subset of
a Hilbert space H, and T : C → H be a strictly pseudo-contractive mapping with coefficient
k ∈ [0, 1). F(T ) is closed and convex, and I − T is demiclosed at 0.

Lemma 2.4 (He and Yang 2013) Let {Δn} and {μn} be two non-negative real numbers
sequences, such that:

Δn+1 ≤ (1 − δn)Δn + δnϑn, n ≥ 1,

Δn+1 ≤ Δn − μn + ζn, n ≥ 1,

where {ϑn}, {ζn}, and {δn} are real sequences with 0 < δn < 1. If
∑∞

n=1 δn = ∞,
limn→∞ζn = 0, and limk→∞μnk = 0 implies lim supk→∞ ϑnk ≤ 0 ({nk} is any real
number subsequence of {n}). The sequence {Δn} converges to 0 as n → ∞.
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3 Self-adaptive inertial Meir–Keeler contraction algorithms

In this section, we propose an algorithm to approximate a solution of the problem (1.1), and
assume that its solution set is nonempty, i.e., Ω = {x∗ : x∗ ∈ F(T ), Ax∗ ∈ F(S)} = ∅. In
addition, the following assumptions are presupposed.

(A1) H1 and H2 are two Hilbert spaces;
(A2) A : H1 → H2 is a bounded linear operator with adjoint operator A∗;
(A3) T : H1 → H1 and S : H2 → H2 are demicontractive mappings with coefficients

k1 ∈ (−∞, 1) and k2 ∈ (−∞, 1), respectively;
(A4) ξ : H1 → H1 is a Meir–Keeler contraction mapping.

The iterative sequence {xn} of the split common fixed point problem is generated by the
following recursive procedure.

Algorithm 1: Self-adaptive inertial Meir–Keeler contraction algorithm (SIMKCA)

Input: Initial points x0, x1 ∈ H1.
Step 1 For any n ≥ 1, the inertial parameters τn ∈ [0, 1) with
limn→∞ τn

θn
‖xn − xn−1‖ = 0. Compute

wn = xn + τn(xn − xn−1); (3.1)

Step 2 If (I − S)Awn = 0, the stepsize βn = σn min
{
1−k1
2 ,

(1−k2)‖(I−S)Awn‖2
2‖A∗(I−S)Awn‖2

}

with

σn ∈ (0, 1). Otherwise, βn = σn(1 − k1)/2. Compute:

un = wn − βn
[

(I − T )wn + A∗(I − S)Awn
]; (3.2)

Step 3 Put θn ∈ (0, 1) with
∑∞

n=1 θn = ∞ and θn → 0 as n → ∞. Compute:

xn+1 = θnξ(un) + (1 − θn)un . (3.3)

Remark 3.1 1. In numerical computation, the value of ‖xn − xn−1‖ is known in each itera-
tion, and the inertial parameter sequence {τn} is easily implemented inStep 1 ofAlgorithm
1. For example, τn can be selected by the following form:

τn =

⎧

⎪
⎨

⎪
⎩

min

{

τ,
αn

‖xn − xn−1‖
}

, xn = xn−1,

τ, otherwise,

where {αn} is a positive sequence with αn = o(θn) and τ ∈ [0, 1).
2. In addition, since the parameter limitation in Step 3 of Algorithm 1, the sequence {θn}

can be chosen by θn = 1
n p (0 < p ≤ 1). Furthermore, using the choice of τn above, we

can easily choose αn = 1
nq (q > p).

Theorem 3.1 Assumed that (A1)–(A4) hold, I −T and I −S are demiclosed at 0, the iterative
sequence {xn} generated by Algorithm 1 converges strongly to x̂ = PΩξ(x̂) ∈ Ω .

Proof Step 1 First, it follows from Lemma 2.2 that F(T ) and F(S) are nonempty closed
convex. This implies thatΩ is closed convex and PΩ is well defined. Take any x̂ = PΩξ(x̂) ∈
Ω , that is, x̂ ∈ F(T ) and Ax̂ ∈ F(S). For any ε > 0, {xn} is bounded via ‖xn − x̂‖ ≤ ε.
On the contrary, for ‖xn − x̂‖ ≥ ε, it follows from Lemma 2.1 that there exists a number
αε ∈ (0, 1) about ε, such that:

‖ξ(xn) − ξ(x̂)‖ ≤ αε‖xn − x̂‖.
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From (3.2), we get:

‖un − x̂‖2 = ‖wn − x̂‖2 − 2βn〈(I − T )wn + A∗(I − S)Awn, wn − x̂〉
+ β2

n‖(I − T )wn + A∗(I − S)Awn‖2
= ‖wn − x̂‖2 − 2βn〈(I − T )wn, wn − x̂〉 − 2βn〈(I − S)Awn, Awn − Ax̂〉

+ β2
n‖(I − T )wn + A∗(I − S)Awn‖2

≤ ‖wn − x̂‖2 − βn(1 − k1)‖(I − T )wn‖2 − βn(1 − k2)‖(I − S)Awn‖2
+ 2β2

n

(‖(I − T )wn‖2 + ‖A∗(I − S)Awn‖2) . (3.4)

From the definition of {βn}, we have (1 − k1 − 2βn)‖(I − T )wn‖2 ≥ 0 and (1 − k2)‖(I −
S)Awn‖2 − 2βn‖A∗(I − S)Awn‖2 ≥ 0. Hence, we set:

Λn = (1 − k1 − 2βn)‖(I − T )wn‖2 + (1 − k2)‖(I − S)Awn‖2 − 2βn‖A∗(I − S)Awn‖2.

Furthermore, we have Λn ≥ 0 and:

‖un − x̂‖2 ≤ ‖wn − x̂‖2 − βnΛn ≤ ‖wn − x̂‖2.

By (3.1), (3.3), and (3.4), we get:

‖xn+1 − x̂‖ ≤ θn‖ f (un) − x̂‖ + (1 − θn)‖un − x̂‖
≤ θn‖ f (un) − f (x̂)‖ + θn‖ f (x̂) − x̂‖ + (1 − θn)‖un − x̂‖
≤ (1 − θn(1 − αε))‖un − x̂‖ + θn‖ f (x̂) − x̂‖
≤ (1 − θn(1 − αε))‖wn − x̂‖ + θn‖ f (x̂) − x̂‖
≤ (1 − θn(1 − αε))‖xn − x̂‖ + θn‖ f (x̂)

− x̂‖ + (1 − θn(1 − αε))τn‖xn − xn−1‖
≤ (1 − θn(1 − αε))‖xn − x̂‖ + θn(1 − αε)

×
(‖ f (x̂) − x̂‖

1 − αε

+ τn‖xn − xn−1‖
θn(1 − αε)

)

. (3.5)

From the conditions limn→∞ τn
θn

‖xn − xn−1‖ = 0 and 0 < αε < 1, we have:

lim
n→∞

τn‖xn − xn−1‖
θn(1 − αε)

= lim
n→∞

1

1 − αε

· τn

θn
‖xn − xn−1‖ = 0.

Therefore, there exists a non-negative constant G > 0, such that G/2 = max
{‖ f (x̂) − x̂‖

1 − αε

,
τn‖xn − xn−1‖

θn(1 − αε)

}

. By virtue of (3.5), we obtain:

‖xn+1 − x̂‖ ≤ (1 − θn(1 − αε))‖xn − x̂‖ + θn(1 − αε)G

≤ max{‖xn − x̂‖, G} ≤ · · · ≤ max{‖x0 − x̂‖, G}.
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This implies that {xn} is bounded. Similarly, we also have that {un} and {wn} are bounded.
Step 2 According to (3.1) and the property (P3), we have:

‖wn − x̂‖2 = ‖xn + τn(xn − xn−1) − x̂‖2 ≤ ‖xn − x̂‖2 + 2τn〈wn − x̂, xn − xn−1〉
≤ ‖xn − x̂‖2 + 2τn‖wn − x̂‖‖xn − xn−1‖.

(3.6)
On the other hand, using the property (P3), (3.3), (3.4), and (3.6), we can obtain:

‖xn+1 − x̂‖2 ≤ ‖θn( f (un) − f (x̂)) + (1 − θn)(un − x̂)‖2 + 2θn〈 f (x̂) − x̂, xn+1 − x̂〉
≤ θn‖ f (un) − f (x̂)‖2 + (1 − θn)‖un − x̂‖2 + 2θn〈 f (x̂) − x̂, xn+1 − x̂〉
≤ (1 − θn(1 − α2

ε ))‖un − x̂‖2 + 2θn〈 f (x̂) − x̂, xn+1 − x̂〉
≤ (1 − θn(1 − α2

ε ))‖wn − x̂‖2 − (1 − θn(1 − α2
ε ))βnΛn

+ 2θn〈 f (x̂) − x̂, xn+1 − x̂〉
≤ (1 − θn(1 − α2

ε ))‖xn − x̂‖2 + 2(1 − θn(1 − α2
ε ))τn‖wn − x̂‖‖xn − xn−1‖

+ 2θn〈 f (x̂) − x̂, xn+1 − x̂〉 − (1 − θn(1 − α2
ε ))βnΛn .

For each n ≥ 1, we set:

Δn = ‖xn − x̂‖2, δn = θn(1 − α2
ε ), μn = (1 − θn(1 − α2

ε ))βnΛn;
ϑn = 2(1 − δn)τn‖wn − x̂‖‖xn − xn−1‖ + 2θn〈 f (x̂) − x̂, xn+1 − x̂〉

θn(1 − α2
ε )

;
ζn = 2(1 − δn)τn‖wn − x̂‖‖xn − xn−1‖ + 2θn〈 f (x̂) − x̂, xn+1 − x̂〉.

Then, the above formula is reduced to the following inequalities:

Δn+1 ≤ (1 − δn)Δn + δnϑn and Δn+1 ≤ Δn − μn + ζn, n ≥ 1.

By the boundedness of {xn} and {wn}, ∑∞
n=1 θn = ∞, limn→∞θn → 0, limn→∞ τn

θn
‖xn −

xn−1‖ = 0 and 0 < αε < 1, we obtain limn→∞ζn = 0 and
∑∞

n=1 δn = ∞. By Lemma 2.4,
we need to show that limk→∞μnk = 0 implies lim supk→∞ ϑnk ≤ 0 for any subsequence of
real numbers {nk} of {n}. Let {μnk } be a any subsequence of {μn}, such that limk→∞μnk = 0.
If (I − S)Awnk = 0, it follows from μn = (1 − θn(1 − α2

ε ))βnΛn that:

lim
k→∞‖(I − T )wnk ‖ = lim

k→∞‖(I − S)Awnk ‖ = 0. (3.7)

By the boundedness of {xn}, there exists a sequence {xnk j
} of {xnk }, such that xnk j

⇀x̄ , and:

lim sup
k→∞

〈 f (x̂) − x̂, xnk − x̂〉 = lim
j→∞ 〈 f (x̂) − x̂, xnk j

− x̂〉.

In addition, by virtue of ‖wn − xn‖ = τn‖xn − xn−1‖ → 0, we have {wnk j
}⇀x̄ . Since

A is a bounded linear operator, Awnk j
⇀Ax̄ . Since I − T and I − S are demiclosed at 0,

from (3.7), we have x̄ ∈ F(T ) and Ax̄ ∈ F(S), which implies that x̄ ∈ Ω . On the other
hand, if (I − S)Awnk = 0, it is clearly that we can also get the same result as above. In
addition, it follows from the property of projection that lim supk→∞ 〈 f (x̂) − x̂, xnk − x̂〉 =
lim j→∞〈 f (x̂)−x̂, xnk j

−x̂〉 = 〈 f (x̂)−x̂, x̄−x̂〉 ≤ 0.According to conditions for parameters
θn and τn , and (3.7), we have:

‖unk − xnk ‖ ≤ ‖wnk − xnk ‖ + βn(‖(I − T )wnk ‖ + ‖(I − S)Awnk ‖)
= τn‖xnk − xnk−1‖ + βn(‖(I − T )wnk ‖ + ‖(I − S)Awnk ‖) → 0,

‖xnk+1 − xnk ‖ = θnk ‖ f (unk ) − xnk ‖ + (1 − θnk )‖unk − xnk ‖ → 0.
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Hence, we have lim supk→∞ 〈 f (x̂) − x̂, xnk+1 − x̂〉 ≤ 0 and:

lim
n→∞

2(1 − δn)τn‖wn − x̂‖‖xn − xn−1‖
θn(1 − α2

ε )
≤ lim

n→∞
2τn‖xn − xn−1‖

θn
· ‖wn − x̂‖

1 − α2
ε

= 0,

which implies that lim supk→∞ ϑnk ≤ 0. By Lemma 2.4, we obtain limn→∞Δn = 0, that is,
xn → x̂ . ��

From Remark 2.1, we obtain a few special cases of demicontractive mappings and got the
following corollaries, which also generalize the existing results in Censor and Segal (2009),
Cui and Wang (2014), Moudafi (2010, 2011), Wang (2017) and Yao et al. (2018).

If T and S are the strictly pseudo-contractive mappings with coefficients k1 ∈ [0, 1)
and k2 ∈ [0, 1), respectively, and the fixed point sets F(T ) and F(S) are nonempty, in
other words, T and S are the demicontractive mappings with coefficients k1 ∈ [0, 1) and
k2 ∈ [0, 1), respectively. According to Lemma 2.3, we know that I − T and I − S are
demiclosed at 0 and its fixed point sets are closed and convex. Thus, we obtain the following
corollary.

Corollary 3.1 Let H1 and H2 be two Hilbert spaces, A : H1 → H2 be a bounded linear
operator with the corresponding adjoint operator A∗, ξ : H1 → H1 be a Meir–Keeler
contraction mapping, and T : H1 → H1 and S : H2 → H2 be strictly pseudo-contractive
mappings with coefficients k1 ∈ [0, 1) and k2 ∈ [0, 1), respectively. For any initial points
x0, x1 ∈ H1, the iterative sequence {xn} is generated by the following cyclic process:

⎧

⎪
⎨

⎪
⎩

wn = xn + τn(xn − xn−1),

un = wn − βn
[

(I − T )wn + A∗(I − S)Awn
]

,

xn+1 = θnξ(un) + (1 − θn)un, ∀n ≥ 1,

(3.8)

where if (I − S)Awn = 0, the self-adaptive stepsize βn = σn min
{
1−k1
2 ,

(1−k2)‖(I−S)Awn‖2
2‖A∗(I−S)Awn‖2

}

with σn ∈ (0, 1); otherwise, βn = σn(1 − k1)/2. Furthermore, τn ∈ [0, 1), limn→∞ τn
θn

‖xn −
xn−1‖ = 0, θn ∈ (0, 1) with

∑∞
n=1 θn = ∞ and θn → 0 as n → ∞.

If the fixed point sets F(T ) and F(S) are nonempty, the iterative sequence {xn} converges
strongly to x̂ = PΩξ(x̂) ∈ Ω .

If the demicontractive mappings T and S with coefficients k1 = −1, k2 = −1, respec-
tively, that is, T and S are the directed mappings. The following corollary holds.

Corollary 3.2 Let H1 and H2 be two Hilbert spaces, A : H1 → H2 be a bounded linear
operator with the corresponding adjoint operator A∗, ξ : H1 → H1 be a Meir–Keeler
contraction mapping, T : H1 → H1 and S : H2 → H2 be directed mappings, and its fixed
point sets be nonempty. For any initial points x0, x1 ∈ H1, the iterative sequence {xn} is
generated by the following cyclic process:

⎧

⎪
⎨

⎪
⎩

wn = xn + τn(xn − xn−1),

un = wn − βn
[

(I − T )wn + A∗(I − S)Awn
]

,

xn+1 = θnξ(un) + (1 − θn)un, ∀n ≥ 1,

(3.9)

where if (I − S)Awn = 0, the self-adaptive stepsize βn = σn min
{

1, ‖(I−S)Awn‖2
‖A∗(I−S)Awn‖2

}

with

σn ∈ (0, 1); otherwise, βn = σn. Furthermore, τn ∈ [0, 1), limn→∞ τn
θn

‖xn − xn−1‖ = 0,

θn ∈ (0, 1) with
∑∞

n=1 θn = ∞ and θn → 0 as n → ∞.
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If I − T and I − S are demiclosed at 0, the sequence {xn} converges strongly to x̂ =
PΩξ(x̂) ∈ Ω .

If the demicontractivemappings T and S with coefficients k1 = 0 and k2 = 0, respectively;
that is, T and S are the quasi-nonexpansive mappings. The following corollary holds.

Corollary 3.3 Let H1 and H2 be two Hilbert spaces, A : H1 → H2 be a bounded linear
operator with the corresponding adjoint operator A∗, ξ : H1 → H1 be a Meir–Keeler
contraction mapping, T : H1 → H1 and S : H2 → H2 be quasi-nonexpansive mappings,
and F(T ) and F(S) be nonempty. For any initial points x0, x1 ∈ H1, the sequence {xn} is
generated by the following algorithm:

⎧

⎪
⎨

⎪
⎩

wn = xn + τn(xn − xn−1),

un = wn − βn
[

(I − T )wn + A∗(I − S)Awn
]

,

xn+1 = θnξ(un) + (1 − θn)un, ∀n ≥ 1,

(3.10)

where if (I − S)Awn = 0, the self-adaptive stepsize βn = σn min
{
1
2 ,

‖(I−S)Awn‖2
2‖A∗(I−S)Awn‖2

}

with

σn ∈ (0, 1); otherwise, βn = σn/2. Furthermore, τn ∈ [0, 1), limn→∞ τn
θn

‖xn − xn−1‖ = 0,

θn ∈ (0, 1) with
∑∞

n=1 θn = ∞ and θn → 0 as n → ∞.
If I − T and I − S are demiclosed at 0, the sequence {xn} converges strongly to x̂ =

PΩξ(x̂) ∈ Ω .

Remark 3.2 According to the existing results inWang (2017) and Yao et al. (2018), the strong
convergence results of both were obtained by employing the Halpern algorithm. If the Meir–
Keeler contraction mapping is a constant mapping, that is, ξ ≡ u (u is a constant), this also
shows that the Meir–Keeler contraction algorithm is equivalent to the Halpern algorithm
under special circumstances. Then, the following self-adaptive inertial Halpern algorithm
for demicontractive mappings is obtained, and extends the existing results in Wang (2017)
and Yao et al. (2018).

Corollary 3.4 Let H1 and H2 be two Hilbert spaces, A : H1 → H2 be a bounded linear
operator with the corresponding adjoint operator A∗, T : H1 → H1, and S : H2 → H2 be
demicontractive mappings with coefficients k1 ∈ (−∞, 1) and k2 ∈ (−∞, 1), respectively.
For any initial points x0, x1 ∈ H1, the iterative sequence {xn} is generated by the following
algorithm:

⎧

⎪
⎨

⎪
⎩

wn = xn + τn(xn − xn−1),

un = wn − βn
[

(I − T )wn + A∗(I − S)Awn
]

,

xn+1 = θnξ(u) + (1 − θn)un, ∀n ≥ 1,

(3.11)

where if (I − S)Awn = 0, the self-adaptive stepsize βn = σn min
{
1−k1
2 ,

(1−k2)‖(I−S)Awn‖2
2‖A∗(I−S)Awn‖2

}

with σn ∈ (0, 1); otherwise, βn = σn(1 − k1)/2. Furthermore, τn ∈ [0, 1), limn→∞ τn
θn

‖xn −
xn−1‖ = 0, θn ∈ (0, 1) with

∑∞
n=1 θn = ∞ and θn → 0 as n → ∞.

If I − T and I − S are demiclosed at 0, F(T ) = ∅, and F(S) = ∅, the iterative sequence
{xn} converges strongly to x̂ = PΩu ∈ Ω .
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4 Theoretical applications

4.1 Split feasibility problems

Let C and Q be two nonempty closed convex subsets of two Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 be a bounded linear operator with the corresponding adjoint
operator A∗. Let PC : H1 → C and PQ : H2 → Q be two metric projection operators, and
ξ : H1 → H1 be a Meir–Keeler contraction mapping. For any initial points x0, x1 ∈ H1,
the iterative sequence {xn} of the split feasibility problem is generated by the following
algorithm:

⎧

⎪
⎨

⎪
⎩

wn = xn + τn(xn − xn−1),

un = wn − βn
[

(I − PC )wn + A∗(I − PQ)Awn
]

,

xn+1 = θnξ(un) + (1 − θn)un, ∀n ≥ 1,

(4.1)

where if (I − PQ)Awn = 0, the self-adaptive stepsize βn = σn min
{

1, ‖(I−PQ)Awn‖2
‖A∗(I−PQ )Awn‖2

}

with σn ∈ (0, 1); otherwise, βn = σn . Furthermore, τn ∈ [0, 1), limn→∞ τn
θn

‖xn −xn−1‖ = 0,
θn ∈ (0, 1) with

∑∞
n=1 θn = ∞ and θn → 0 as n → ∞.

Theorem 4.1 If the solution set of split feasibility problem Ψ = {x∗ : x∗ ∈ C, Ax∗ ∈
Q} = ∅, the iterative sequence {xn} generated by algorithm (4.1) converges strongly to
x̂ = PΨ ξ(x̂) ∈ Ψ .

Proof From the definitions of the demicontractive mapping and the metric projection, we
know that the metric projections PC and PQ are demicontractive mappings with coefficient
k = −1, the fixed point sets of metric projection operators PC and PQ are C and Q,
respectively. In addition, it is well known that the metric projection is demiclosed to 0.
According to Theorem 3.1, the strong convergence results of {xn} generated by algorithm
(4.1) are obtained. ��

4.2 Split equilibrium problems

Let C be a nonempty closed and convex subset of a Hilbert space H . The well-known
equilibrium problem is to find a point z ∈ C satisfy F(z, x) ≥ 0, ∀x ∈ C, where F :
C × C → R is a bifunction and the following conditions hold.

(E1) F(x, x) = 0, ∀x ∈ C .
(E2) F(x, y) + F(y, x) ≤ 0, ∀x, y ∈ C .
(E3) For any x, y, z ∈ C , lim supa→0+ F(az + (1 − a)x, y) ≤ F(x, y).
(E4) For each x ∈ C , the function y �→ F(x, y) is convex and lower semi-continuous.

The solution set of equilibrium problem is denoted by E P(F). The equilibrium problem has
the following important properties.

Lemma 4.1 (Combettes and Hirstoaga 2005) Let C be a nonempty closed convex subset of
a Hilbert space H, and let F : C × C → R be a bifunction satisfying (E1)–(E4). For each
r > 0 and x ∈ H, there exists a point z ∈ C, such that:

F(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C .

Set TF
r (x) = {z ∈ C : F(z, y) + 1

r
〈y − z, z − x〉 ≥ 0,∀y ∈ C}, ∀x ∈ H. Then:
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1. TF
r is single-valued.

2. TF
r is firmly nonexpansive, i.e., ‖TF

r x − TF
r y‖2 ≤ 〈TF

r x − TF
r y, x − y〉.

3. F(TF
r ) = E P(F) is nonempty, closed, and convex.

Definition 4.1 Let C and Q be two nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively, and A : H1 → H2 be a bounded linear operator, F : C × C → R
andK : Q × Q → R be two bifunctions satisfying (E1)–(E4). The split equilibrium problem
is to find:

x∗ ∈ E P(F), and Ax∗ ∈ E P(K).

Let C and Q be two nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, F : C × C → R and K : Q × Q → R be bifunctions satisfying (E1)–(E4), let
A : H1 → H2 be a bounded linear operator with adjoint operator A∗, and ξ : H1 → H1 be a
Meir–Keeler contraction mapping. For any initial points x0, x1 ∈ H1, the iterative sequence
{xn} of the split equilibrium problem is generated by the following algorithm:

⎧

⎪
⎨

⎪
⎩

wn = xn + τn(xn − xn−1),

un = wn − βn
[

(I − TF
r )wn + A∗(I − TK

r )Awn
]

,

xn+1 = θnξ(un) + (1 − θn)un, ∀n ≥ 1,

(4.2)

where if (I − TK
r )Awn = 0, the self-adaptive stepsize βn = σn min

{

1, ‖(I−TK
r )Awn‖2

‖A∗(I−TK
r )Awn‖2

}

with σn ∈ (0, 1); otherwise, βn = σn . Furthermore, τn ∈ [0, 1), limn→∞ τn
θn

‖xn −xn−1‖ = 0,
θn ∈ (0, 1) with

∑∞
n=1 θn = ∞ and θn → 0 as n → ∞.

Theorem 4.2 If Γ = {x∗ ∈ H : x∗ ∈ E P(F), Ax∗ ∈ E P(K)} = ∅, the iterative sequence
{xn} generated by algorithm (4.2) converges strongly to x̂ = PΓ ξ(x̂) ∈ Γ .

Proof From the definitions of the demicontractive mapping and the firmly nonexpansive,
when the fixed point set is nonempty, the firmly nonexpansivemapping is the demicontractive
mappingwith coefficient k = −1. In addition, it is well known that the firmly nonexpansive is
demiclosed to 0. According to Theorem 3.1 and Lemma 4.1, the results of strong convergence
of sequence {xn} generated by algorithm (4.2) are obtained. ��

5 Numerical examples

In this section, we provide some numerical examples to demonstrate the effectiveness and
realization of convergence behavior of Theorem 3.1. All codes were written in Matlab
R2018b, and ran on a Lenovo ideapad 720S with 1.6 GHz Intel Core i5 processor and 8GB
of RAM. Our results compare the existing conclusions below. First, we give these theorems
and iterative algorithms as follows.

Theorem 5.1 (Censor and Segal 2009) Let H1 = RN and H2 = RM , A be a matrix RM×N .
Let T : H1 → H1 and S : H2 → H2 be directed mappings. The iterative sequence {xn} of
the split common fixed point problem (1.1) is generated by the following iterative scheme:

xn+1 = T (xn − β A∗(I − S)Axn), ∀n ≥ 1, (5.1)

where AT is the matrix transposition of A, M is the largest eigenvalue of matrix AT A, and
β ∈ (0, 2/M). If I −T and I − S are demiclosed at 0, F(T ) = ∅ and F(S) = ∅, the iterative
sequence {xn} converges to a point x̂ ∈ Ω .
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Theorem 5.2 (Moudafi 2010) Let H1 and H2 be Hilbert spaces, and A : H1 → H2 be a
bounded linear operator with the adjoint operator A∗. Let T : H1 → H1 and S : H2 → H2

be demicontractive mappings with coefficients k1 ∈ [0, 1) and k2 ∈ [0, 1), respectively.
The iterative sequence {xn} of the split common fixed point problem (1.1) generated by the
following iterative scheme:

{

un = xn − β A∗(I − S)Axn,

xn+1 = (1 − δn)un + δnT un, ∀n ≥ 1,
(5.2)

where M is the spectral radius of matrix A∗ A, β ∈ (0, (1 − k2)/M) and δn ∈ (ε, 1− k1 − ε)

for a small enough ε > 0. If I − T and I − S are demiclosed at 0, F(T ) = ∅ and F(S) = ∅,
the iterative sequence {xn} converges weakly to a point x̂ ∈ Ω .

Theorem 5.3 (Boikanyo 2015) Let H1 and H2 be Hilbert spaces, and A : H1 → H2 be
a bounded linear operator with the adjoint operator A∗. Let T : H1 → H1 be a directed
mapping and S : H2 → H2 be a demicontractive mapping with coefficient k2 ∈ (−∞, 1),
respectively. The iterative sequence {xn} of the split common fixed point problem (1.1) is
generated by the following iterative scheme:

{

un = xn − βn A∗(I − S)Axn,

xn+1 = δnu + (1 − δn)((1 − ω)un + ωT un), ∀n ≥ 1,
(5.3)

where βn = (1−k2)‖(I−S)Axn‖2
2‖A∗(I−S)Axn‖2 with Axn = S Axn; otherwise, βn = 0. ω ∈ (0, 1 − k1) and

δn ∈ (0, 1) with
∑∞

n=1 δn = ∞ and δn → 0 as n → ∞. If I − T and I − S are demiclosed
at 0, F(T ) = ∅ and F(S) = ∅, the iterative sequence {xn} converges strongly to a point
x̂ ∈ Ω .

Example 5.1 Set C = {(x1, x2, x3) ∈ H1 : x22 + x23 − 1 ≤ 0}, Q = {(y1, y2, y3) ∈ H2 :
y21 − y2 + 5 ≤ 0}, T = PC and S = PQ , in addition, A =

[ √
5 0 0
0 5 0
0 0 1

]

. It is easy to check that

x∗ = (0, 1, 0) is a unique solution of split common fixed point problem (1.1).
Our parameters are set as follows. In our Algorithm 1, set ρn = 1

(n+1)2
, τ = 0.5, σn = 0.5,

θn = 1
n+1 and ξ(un) = 0.3un . In Algorithm (5.1), set β = 1.8

‖A‖2 . In Algorithm (5.2), set

β = 1.8
‖A‖2 , δn = 0.6. In Algorithm (5.3), set δn = 1

n+1 , u = x0 and ω = 0.5. The error of

the iterative algorithms is denoted by En = ‖xn − x∗‖2. Take initial points x0, x1 which are
generated randomly inMATLAB and En < 10−3 or maximum iteration 1000 as the stopping
criterion. Our numerical results are shown in Fig. 1.

Example 5.2 In this example, we consider H = L2([0, 2π]) with the inner product
〈x, y〉 := ∫ 2π

0 x(t)y(t)dt and with the associated norm which given by ‖x‖2 :=
(
∫ 2π
0 |x(t)|2dt

) 1
2
, ∀x, y ∈ L2([0, 2π ]). We also consider the following half-space:

C =
{

x ∈ L2([0, 2π ]) :
∫ 2π

0
x(t)dt ≤ 1

}

and

Q =
{

x ∈ L2([0, 2π ]) :
∫ 2π

0
|x(t) − sin(t)|2 dt ≤ 16

}

.
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Fig. 1 Numerical results for Example 5.1

Defining a linear continuous operator A : L2([0, 2π ]) → L2([0, 2π]), where (Ax)(t) :=
x(t). Then, (A∗x) (t) = x(t) and ‖A‖ = 1. Now, we solve the split common fixed point
problem: find x∗ ∈ F(T ), such that Ax∗ ∈ F(S), where T = PC and S = PQ . For our
numerical computation, we can also write the projections onto set C and the projections onto
set Q as follows:

PC (z) =
{

1−∫ 2π
0 z(t)dt
4π2 + z,

∫ 2π
0 z(t)dt > 1,

z,
∫ 2π
0 z(t)dt ≤ 1,

and

PQ(w) =
⎧

⎨

⎩

sin+ 4
√

∫ 2π
0 |w(t)−sin(t)|2dt

(w − sin),
∫ 2π
0 |w(t) − sin(t)|2dt > 16,

w,
∫ 2π
0 |w(t) − sin(t)|2dt ≤ 16.

We consider different initial values x0 and x1. The error of the iterative algorithms is denoted
by:

En = 1

2
‖T (xn) − xn‖22 + 1

2
‖S (A (xn)) − A (xn)‖22 .

Our parameter settings are the same as in Example 5.1. Take En < 10−3 or maximum
iteration 200 as the stopping criterion. Our numerical results are shown in Table 1 and Fig. 2.
In Table 1, “Iter.” and “Time(s)” denote the number of iterations and the cpu time in seconds,
respectively.

Example 5.3 We consider a linear inverse problem: b = Ax0 + w, where x0 ∈ RN is
the (unknown) signal to recover, w ∈ RM is a noise vector, and A ∈ RM×N models the
acquisition device. To recover an approximation of the signal x0, we use the Basis Pursuit
denoising method, that is, use the �1 norm as a sparsity enforcing penalty:

min
x∈RN

Φ(x) = 1

2
‖b − Ax‖2 + λ‖x‖1, (5.4)
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Table 1 Numerical results for Example 5.2

Cases Initial values Our Alg. 1 Alg. (5.1) Alg. (5.2) Alg. (5.3)
Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)

I x0 = 2t2, x1 = t3
10 9 3.3311 10 2.4528 17 4.1646 200 50.5499

II x0 = t2, x1 = 2t 11 3.8928 14 3.5019 20 5.3951 200 55.4820

III x0 = t2, x1 = et 11 3.9093 16 3.9798 19 4.7086 200 50.3240

IV x0 = sin(t), x1 = 3t2 13 4.4807 17 4.1929 21 5.2177 200 50.3049
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Fig. 2 Convergence behavior of iteration error {En} with different initial values for Example 5.2

where ‖x‖1 = ∑

i |xi | and λ is a regularization parameter that closely relate to noisew. Using
the idea of convex analysis, a minimizer of (5.4) is a solution of the constrained least-squares
problem:

min
x∈RN

1

2
‖b − Ax‖22 such that ‖x‖1 < t, (5.5)

for any non-negative real number t . Note that, our Algorithm 1 can be applied to approx-
imate solutions of the problem (5.5), because it is a special case of the SCFPP, where
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Fig. 3 Original and noisy signals for Example 5.3

C = {

x ∈ RN : ‖x‖1 < t
}

, Q = {b}, T = PC , and S = PQ . For more discussion, see
López et al. (2012).

In our experiment, we want to recovery a sparse signal x0 ∈ RN with k (k � N ) non-zero
elements. A simple linearized model of signal processing is to consider a linear operator,
that is, a filtering Ax = ϕ(x), where ϕ is a second derivative of Gaussian. We wish to solve
b = Ax0 + w, where w is a realization of Gaussian white noise with variance 10−2. Hence,
we need to solve the problem (5.5). Set N = 1000, k = 30, and t = ‖x0‖1. Our parameter
settings are the same as in Example 5.1.We take themaximumnumber of iterations 5×104 as
a common stopping criterion. In addition, we use the signal-to-noise ratio (SNR) to measure
the quality of recovery and a larger SNR means a better recovery quality. Numerical results
are reported in Fig. 3 and Fig. 4. The SNR of Algorithm 1, Algorithm (5.1), Algorithm (5.2),
and Algorithm (5.3) are 9.2100, 6.6486, 6.9471, and 6.9033, respectively.

Remark 5.1 (i) FromExample 5.1–Example 5.3,we know that our proposedAlgorithm1 is
faster than theAlgorithm (5.1), theAlgorithm (5.2), and theAlgorithm (5.3). Observing
the same expected results, our scheme is better.

(ii) In the case that the selection of the initial point does not affect the computing perfor-
mance, our proposed algorithm is robust. (see Figs. 1 and 2).

6 Conclusion

Thefirst conclusion fromSect. 3 is thatwe gave self-adaptive inertialMeir–Keeler contraction
algorithms to approximate the solution of the split common fixed point problem (1.1) in
the framework of infinite Hilbert spaces. It is worth noting that the corresponding strong
convergence theorems are obtainedwithout prior knowledge of operator norms. An important
distinction between our Algorithm 1 and the existing results is that the excellent stability and
better convergence rate of our algorithm are guaranteed by the proposed self-adaptive stepsize
sequence. In numerical examples, some numerical experiments and a signal recovery problem
are performed to demonstrate the validity and authenticity of our algorithm. Furthermore,
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Fig. 4 Numerical results for Example 5.3

we compared with the existing results in Boikanyo (2015), Censor and Segal (2009) and
Moudafi (2010), which implies that our Algorithm 1 is superior and stable.
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