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Abstract

This article is concerned with a universal version of projected reflected gradient method
with new step size for solving variational inequality problem in Hilbert spaces. Under
appropriate assumptions controlled by the operators and parameters, we acquire the
weak convergence of the proposed algorithm. Moreover, we establish an R-linear con-
vergence rate of our method on the condition that the relevant mapping is strongly
monotone. We rework our first algorithm so that it can be simplified to several gener-
alized methods in the literature. The efficacy and availability of our proposed iterative
scheme are demonstrated in numerical experiments.

Keywords Projected reflected gradient method - Variational inequality -
Weak and linear convergence - Hilbert spaces

Mathematics Subject Classification 47HO5 - 47H07 - 47H10 - 54H25

B Gang Cai
caigang-aaaa@ 163.com

Xiaolin Zhou
zhouxiaolinmath@ 163.com

Bing Tan
bingtan72 @ gmail.com

Qiao-Li Dong
dongql@lsec.cc.ac.cn
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China

Tianjin Key Laboratory for Advanced Signal Processing and College of Science, Civil Aviation
University of China, Tianjin 300300, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01566-1&domain=pdf

118 Numerical Algorithms (2024) 95:117-147

1 Introduction

Let’s assume that C is a nonempty, closed and convex subset of a real Hilbert space
H. Then, we think about the variational inequality problem (VIP, for short) as below:
Find u* € C with

(Au*,u —u*) >0, VYueC, )

where A : C — H is a given mapping and it is continuous. The solution set of (1) is
expressed as S := VI(C, A) and we assume S #= .

VIP can be used as a fundamental tool in a broad range of optimization problems,
economics and other associated problems (see, for example, [1-5]), so it has attracted
the attention of many researchers. Therefore, many reseachers have come up with a
great deal of different iterative methods for solving VIP (see, for example, [13, 15, 16,
23, 25, 28-33, 35]).

One of the researchers, Korpelevich, put forward the extragradient method in [6],
whose iterative process is the following form:

{ vy = Pc (up — nAuy), 2)

upt1 = Pc (uy — pAv,), n >0,

where ug € C, u € (0, %) and L > 0. We have to estimate the operator A twice
and do two projections on C in each iteration. Sometimes, if C is a complex set, two
projections will seriously affect the effectiveness and usage of the method.

To decrease the calculation cost of (2), many authors have tried to reduce the number
of projections. Censor et al. [20] came up with the subgradient extragradient method
and the iterative process of the new method is obtained by:

vn = Pc (un — Auy) ,
Ty ={weH:{uy — nAuy, — vy, w —vy) <0}, (3)
un+1 = Pr, (n — nAv,), n=>0,

where ug € H, n € (0, %) and L > 0. Apparently, (3) still needs to calculate the
operator A twice in each iteration. The second projection of (3) is projected into the
half space 7;,, which possesses an explicit formula. Thus, the subgradient extragradient
method is better than the extragradient method.

Later, Malitsky and Semenov referred to the ideas of algorithms in [20, 21] and
showed an effective and improved algorithm in [22]:

Ty :={weH:{uy — nAvy—1 — vy, w — vy) <0},
Up41 = PTn (up — wAvy), “4)
Unt1 = Po (Upy1 — nAvy), n >0,

where 1 € (0, i]. This method only computes one projection onto the admissible
set per one iteration.
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In 2015, the projected reflected gradient method was discovered by Malitsky in [7]
and its iterative process as below:

Upi1 = Pc (up — pnAvy), (5)
Vpt1 = Cupyr —vp), n >0,

V2-1

where u, € (0, ¥—) and L > 0. In each iteration, (5) is same with (4) regarding the
number of projections onto the admissible set. However, this method holds a simpler
form. Many authors have proposed a great deal of improved schemes (see, for example,
[8, 18, 24, 26, 27]), which are based on the projected reflected gradient method.

Dong et al. [9] introduced a general inertial projected gradient method to find a
solution for VIP, its form is that: ug € C and vy, wg € H,

upy1 = Pc (wp — upAvy),
Vpngl = Upy1 + 8 (Upp1 — Up), (6)
Wyl = Upr1 +0 (U1 —uy), n=>0,

where § € (1, 00)and 6 € [0, %). The differences between this method and above
methods are that it takes an adaptive step size and uses the inertial extrapolation step.
Olaniyi and Yekini combined the characteristics of the above algorithms and

developed a generalized projected reflected gradient method in [11]: ug € C and
vo,wg € H,

up+1 = Pc (wy — unAvy),

Upt1l = Upy1 + 6 (Upp1 — Up), @)

Wpt+1 = Upt1 +0 (Upy1 —up), n >0,

whered > 0,0 <0 < %ﬂ and 252(1 —30) > 6§ —0+256. We notice that this method
selects two inertial parameters and only computes one projection and an operator in
each iteration.

Based on the understanding of above algorithms, we innovate a new projected gra-
dient method for the sake of solving VIP. We testify the weak and linear convergence
of our algorithm in detail. The biggest highlight of our algorithm is that it combines
a variable step size, which is controlled by multiple parameters &, 6 and . Moreover,
we improve our algorithm into a new one, which can be simplified to some classical
methods in the literature. The improvements of our article are not only reflected in
the parameters, but also in the definition of step size. It is apparent to observe that we
can make numerous accelerated improvements and repeatedly optimize our algorithm
by our ideas. The data experiments show that if different parameters are adopted, the
convergence rate of our algorithm can be improved in different degrees.

The rest of our article is structured as below: In Sect. 2, we review some definitions
and lemmas to be adopted in our convergence analysis. Our own algorithm is on
display in Sect.3. In Sect.4, the weak and linear convergence of our algorithm are
verified in detail. In Sect. 5, we innovate a modified algorithm with an improved step
size. Section 6 mainly includes our numerical experiments and Sect.7 expresses the
conclusions.
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2 Preliminaries

In this section, we will state some basic definitions and lemmas used in the text.
Let H be a real Hilbert space and C be a nonempty, closed and convex subset of
H. The weak convergence of {u,}7° , to u is denoted by u,,—u as n — oo, while the

strong convergence of {u,}°2 | to u is denoted by u, — u as n — oo.

Definition 1 If C is a nonempty, closed and convex subset of H. In that way, Pc is
called the metric projection of H onto C, if for any x € H, we have aunique Pcx € C
such that

lx = Pex|l < llx —vll, YveC.

It is easy to see that Pc is a firmly nonexpansive mapping of H onto C, that is,
(u — v, Pcu — Pcv) > ||Pcu — Pcv||2, Yu,veH.

Moreover, we have
(u — Pcu, Pcu —v) >0, VYveC,

which implies that
lu —vlI> > llu — Pcull® + v — Pcull®, Yue H,veC.

Definition2 If A : H — H is an operator,
(i) A is said to be L-Lipschitz continuous if there exists some L > 0 such that

|Au — Av|| < L|lu —v||, Yu,veH.
(i1) A is said to be y-strongly monotone if there exists some y > 0 such that
(Au— Av,u —v) > yllu —v||>, VYu,veH.
(iii) A is said to be monotone, if
(Au — Av,u —v) >0, Vu,veH.

Lemma 1 ([12]) The following two equalities are common in H:

(i) 2(u, v) = [ull> +[vl|I* = llu —v[* = u+vlI> = llull* = [v|*, Yu,veH;
(i) lou—+ (1 —a)l* = alul*+ A —a)lv|* —a(l —a)|u—v||*, Vu,veH
and o € R.

Lemma2 ([19]) Given a mapping A : C — H and z € C, if A is continuous and
monotone. Then z € S < (Au,u —z) >0, Vu € C.

Lemma 3 ([7]) Suppose that {s,} and {t,} are two real sequences, for any n > 0,
sp > 0andt, > 0. If we have the following inequality:

Sp+1 = Sp — In,
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then we get that {s,} is bounded and lim,_, , t, = 0.

Lemma4 ([18]) Let {s,} and {t,} be two sequences of nonnegative numbers such that
Su+l + a1 < (1 — p)sy +7psp—1 + riy,

where p € (0, 400) and r € (0, 1). Then the sequence {s,} converges linearly to 0.

3 Proposed algorithm

Now we introduce our first algorithm for solving VIP, which is derived from the
projected gradient method in [11]. In order to precisely obtain the weak and linear
convergence results of our method, we need the following conditions:

(C1) C is a nonempty, closed and convex subset of H.

(C2) A: H — H is monotone and L-Lipschitz continuous.

(C3) The solution S for VIP is nonempty.

(C4)6 >1,e >0.

(C5) 60 €[0,00),0 <6 < 25‘% and 26%(1 — 30) > 8 — 0 + 286.

We provide a new algorithm as follows:

Algorithm 1 Projected reflected gradient method with adaptive step size.
Initialization: Let ;1o > 0 and set n := 0. Assume

S5—(1+20)0 (B-6) ¢

2822 +e+1) 282 e+1’

262(1—-30) —6+6 —280 282(1—30)—8+6 ¢
282(e2 +¢e+1) ’ 2682 e+1

= min

|

)

choose 7 € (0,7) and let ug € C, vg, wp € H be any three starting points.
Iterative Steps: u,, | is determined via the previous v, and wj as follows:
Step 1. Compute

upt1 = Pc(op — pnAvy),

Vptl = Upyl +0(Upp1 — un),

Opt1 = Upt1 +O0Wp41 — un).

If we have w, = v, = u,41, then Stop. Conversely, go to Step 2.

Step 2. Let
+1

. 2, ¢ 2, .2 2
pon =+ Dllvy—1 —unl®+ [l —vull” + & ””n+1 —vll5,

and turn the original step size into a new

Mn, if(Avy — Avy—1,vp —upyq) <0,

®)

Hn+1 =

H NPn H
min herwise.
{ (Avp—Av,_| sUn_“n-H> ’ M”}’ otherwise

Step 3. Next: set n := n + 1 and go to Step 1.
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Remark 1 We see that {u,} is a decreasing sequence, which holds a positive lower
bound:

. 2en
pn > min{uo, T} >0, Vn>0.

It is easy to see that p,+1 < un, Yn > 0. Observe that

2
vy — vp—1ll
2 2
= vy —unll” + llup — va—1I” + 2{(vy — up, up — vy—1)

2 2
< g — upll™ + llp — vo—1ll” + 2|lvy — upllllug — va—1ll

1
2 2 2 2
< lvn — unll”™ + lluy — va—1ll” + g”vn —upll” +ellup — vyt

e+1
= — vy — unll* + (& + Dllun — va1]*.

From the definition of p,,, when (Av,_1 — Avy,, up4+1 — v,) > 0, we know that

npn
(Avy — Avy—1, vy — Upy1)
_ 0en = vt + € un 1 — vall?)
(Avp — Avp—1, Uy — Upt1)
o 2enlive = vn—1llllunt1 — vnll
(Avy, — Avp—1, Uy — Up+1)
2en
7

>
which implies
Mn = min{uo, 2%’7}, Vn > 0.
So, there exists u > 0 such that

. . 2¢en
lim p, = u > min{ug, —} > 0.
n—0oo L

4 Convergence results

This section considers the weak convergence of Algorithm 1. Meanwhile, the linear
convergence rate of the Algorithm 1 is shown in detail.

4.1 Weak convergence
First, we establish a lemma that plays a crucial role in our discussion of convergence.
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Lemma5 Suppose that the conditions (C1)-(C5) are satisfied and {u,} is a sequence
generated by Algorithm 1. For any u* € S, let

sw = Ny — u* 1> = Ollun—1 — u*|1* + 260 |lup — un—1*
0
I 2 4 D)ty — vt 1P+ 20tn18(AUF sy — ),
Sptn—1 Hnt1

and
(6 — ) un MUn B 2
t, =[1—36 — - — — ,
n [ 52/111—1 2tn 10 B Wups1 — unll
where
S+ 1o 0
By = max{( ': )0 1Ly + 27]82 Mn + Mn+1 e + l)llvn—t-l ’
3 un—1 Hn+tl Spkn Hn+2
% 1
. Mn + 2718 +1 un '
3 n—1 & Un+l

Then there exists some no € N such that s, 1 < s, —t, and t, > 0 for any n > ny.

Proof Since u,, = Pc(w,_1 — n_1Av,_1), we have
(Up — wy—1 + pp—1Avy_1,u —uy) >0, VueC. ©)]
First let u = u, 41 and substitute it into (9), we obtain
(un — On—1 + Un—1AVp—1, Upt1 — Un) = 0, (10)
then let u = u,,_; and substitute it into (9), we have
(un — wp—1 + pn—1Ava—1, Up—1 — up) > 0. (1)
Substituting § times of (11) into (10), we get
(n — On—1 + Pn—1AV—1, Upt1 — Un + 8(Up—1 — uy)) = 0. 12)
Owing to v, = u, + §(u,, — u,—1), we get
(Up — Op—1 + Un—1AV—1, Upy1 — V) = 0. (13)
Equivalently, we get

(Mn—1AV 1, 0y — Upy1) < (Up — Wp—1, Upy1 — Vp). (14)

@ Springer



124 Numerical Algorithms (2024) 95:117-147

By w, = u,, +6(u, — u,—1), we obtain
Up — Wp—] = Up — Up—1 — O(Up_1 — Uy_2)

0
=Up —Up—] — g[(un —up—1) — (Uy — vy—1)]
_ §—0
8

5—0 0
= _Z(Un —up) + g(un = Up—1)-

(15)

%
(up —up—1) + E(un — V1)

Observe that

2 2 2
2(vp — up, g1 — Vp) = llupsr — unll” — llup — vpll” — llutng1 — vall”,

and

2{Up — Vp—1, Upg1 — Up)
_ 2 2 2
= up — Vn—1I” + llttn+1 — vull” — lltty — Vu—1 — tn41 + vyl

< llun = Vot I + 1 — v 1%
Substituting (15) into (14), we get

2n (AVp—1, Uy — Up+1)
2pn
Mn—1
20n(8 — 6) 2pn0
=n—2(vn_un,un+1_vn>+ s
Hn—18 Hn—18
- Mn (8 —29)
Hn—18
Hn
Hn—10
(6—-0)u
= " lungr — all® + (

azﬂnfl
o @+ Dou Iz

g = va1 1> + [ = ———ltng1 — val*.
8,un_1 ) Mn—1 Sﬂn—l

A

(p — wp—1, U1 — Vp)

(Up — Vp—1, Upy1 — Vp)
2 2 2
Nunrr —unll™ = Nlup — vull” — llttn41 — vall”]

(16)

2 2
Nun — va—1II” + lttnt1 — vall”]

O 1n __Ha
32,[,5,1,1 Sn—1

2
Muy — vyl

From u,+1 = Pc(w, — w,Avy,), we have that for any u € C
(Upt1 — Wy + pAvy, u — upq1) > 0.

In particular, we have

2Upg1 — Wy + U Avy, Upp1 — u*> <0. (17
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Combining (16) and (17), we get
2440 (A1, Uy — tpg1) + 2(Ung1 — 0p + g AV, Up g1 — ™)
(6 —0)un 2 O n Mn 2
< —_— J— — —
= 52,un—1 lttns1 — unll +(62,Uvn—1 Sllvn—l)”un vl (18)
Oun 6+ Dou Iz
“MNun = va1 1P+ [ — = llun 1 — v,
Sthn_1 3 n—1 Spn—1
which is equal to
2 (Avy_1 — Avy, Uy — Upg1)
+ 20 (Avy, vy — u*) + 2<un+1 — Wp, Up41 — u*>
6 — Dy, 2 O 1n Mn 2
< 5 lups1r —unll” +( - Min — vnll (19)
52/JLn—l " " Szﬂn—l Shn—1 " "
o 6+ Dou 1z
" Mun = vp1 P+ [ — = lluns1 — vl
Shn—1 8% hn—1 Sitn—1
Also, we have
2(Upt1 — Wpy U1 — uF)
" ’ n;_ *112 *112 (20)
= |lup+1 — @nll” + llupy1r —u™ |7 — llop —u™||".
So, we write (19) as
41— u*))?
< llwn — u*1* = uns1 — onll* + 240 (Ava—1 — Avy, tn g1 — Vi)
@ —0)u
= 2tn (A, vy — U*) + " (g1 — un|?
8 pn—1 1)
O 2z O
+ (g = = un — vall* + =l — Va1 |I?
) Mn—1 8/1%—1 (Sﬂn—l
G+ DHou 12
g = ———lltng1 — val*.
3 pn—1 Sn—1
From the definition of u,, we get
2pp{Avy—1 — Avy, Up+1 — Up)
n
= ——2p11(AVp_1 — AUy, Upy1 — V)
Mn+1
w 22)
< ol + ) ln — vt I (
Mn+1
P
+ litn = vall* + & ltn g1 = vall].
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Since A is monotone, it is obvious that
2pn(Avy, vy — u*) = 2, (Au™, v, — u™). (23)
Since

Vp—u  =uy + 8y —up—1) —u*

24
=1 +8)u, —u™) = 8(up—1 —u*). 9
Therefore, we get

20 (Au™, v, — u™)
= 2pn (Au™, (1 +8)(up — u™) — 8(up—1 — u™)) (25)
=2, (1 + 8)(Au™, upy — u™*) — 21,8 (Au™, upy_y — u™).

By (23) and (25), we get

2 {Avy, vy — ”*)

26
> 20 (1 4+ 8)(Au™, uy — u™) — 2, 8(Au™, 1 — u™). (20
From (21), (22) and (26), we have
a1 — u*)?
< llwn — u*[1* = lluns1 — wnll?
"w e+ 1
+ n12n[(8 + Dlltn — vao1 > + litn — vall® + 2 lluns1 — vall?]
n—+
— 200 (1 + 8)(Au™, ty — u™) + 28 (Au™, up_1 — u*) 27)
(6 — ) pun 2 O 1n Mn 2
+ ———Mupy1 —upll” +(—— — Muy — vyl
2py T ! pnt Sy
o 6+ Don 1z
+ —Mun — va1 ? + [ = ———lttng1 — val*.
(S/J‘nfl 8 Mn—1 8#7!*1
Since
2(“n+1 — Up, Up — un—l)
= lltns1 — tnll* + Nty — un—1 > = lttns1 + un—1 — 2u, ||
< g1 — unll® + Nty — wn—11l?,
we get
ltns1 — 0nll* = g1 — un) — Oy — un—1)|1?

= ||Mn+l - unllz - 29(“n+l —Up, Uy —Up—1) + 92”’411 — Up—1 ”2 (28)

> (1= )1 — unl®* + 60 — Dllun — un_1|*.
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From Lemma 1, we obtain that

lwn — u*1* = |1 + 0y — u*) — O(up—1 — u™)||*

(29)
= (14 0)|lup—u*||> =0 ttp—1 —u*[I>+0(1 + ) |ty — up—1|°.

Putting (28) and (29) into (27), we attain

[
< (A +0)luy — u*|* = Ollup—y — u*1* + 61 + O)lluy — 1|

— (1= ) ltng1 — unll* — 6O — Dllun — tn—1?

nm e+1
+ —"2nl(e + Dllun — va—1 > + lun = vall> + & lttns1 — vall*]
Mn+1 3 (30)
— 20 (1 4 8)(Au™, up — u™) + 2,8 (Au™, up—1 — u™)
6 =0)uy, 2 0 1en Hn 2
+ 52Mn—1 1 — unll” + (82Mn—1 St Mun — vgl
Ou 8+ Do 2
+ —un — va1 1? + [ = ———lttng1 — val*.
Sitn_1 8 tn—1 Sphn—1

Equivalently, we have

2
lun 1 — ull

2 2 2
=< llun — w17+ OUlun — u™[I* = llup—1 — u*|I7]

Rl
+ [ 40 — Ulluns1 — un > + 20y — up—1|*
3% pn—1
u e+1
=== 2nl(e + Dllitn = Va1 7+ —— llun = val* + & lltn g1 = val*] 3
Mn+1
— 2, (1 + 8)(Au*, Up — u*) + 2//Ln8(Au*v Up—1 — u*)

O un Hn 2 Open
= )lup —vall” +
Sz,unfl Spn—1 ! " Sin—1
(6 + DOy Mo

2
s g e = vl

2
ity — vyt
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Observe that i, < jt,_1.Atthe same time, since u™ € S, we know that (Au™, u,, —
u*) > 0and (Au*, u,—1 — u*) > 0. So we get that

2
[

2 2 2
< lup — w*lI” + OUlun — w17 = llup—1 — u*|I7]

6 — )
g 0 = s = unl® + 201y = ]

n—1

"w e+ 1
+ =2l + Dllitn = Va1 |7 + —— llutn = va* + &% llttn 1 = 0a*] 35
Mn+1 &
=20 8(AU", Uy — u*) + 2un—1 8(AU", Upy—y — u*)
O pin Hn 2 O 1n 2
- Mty — vall* + ltn — varll
52/JLn—l Sin—1 ! " Sin—1 " "
G+ Dou 1z
g = = lluns1 — vl
8% pn—1 Spn—1

Therefore from (32), we have

2 2 2
lun1 — w*lI” = Ollun — u™ (1" + 20 ltnq1 — unl

0
+ I 2 Dy — 0y + 200, 80A0", 1y — )
Sy Hn+2

2 2 2
< llup — w17 = Ollun—1 — u™ " + 20 |upn — un—1]l

0
I (e + D) iy — vpt P+ 201 $(AUT gy — )

Sphn—1 Mn+1
d—0u
—[1-306 — z—n]Hun—H — Up ”2 (33)
3 n—1
Hn 8+ DOy, 2 HMn
- - — 2ne
Sin—1 8% p—1 Mn+1
0 tnt1 Mn+1
— 2+ D g — val)?
Sy Mn42
nw on e+1
[ -5 -2 "ty — vall*.
Sin—1 8" pn—1 € Mn+l
Let
5§+ 1o 0
B, =max{(2J tope2 g THEL L e + L
8% n—1 Mn+1 Spin Mn+2 (34)
O pn e+l py
3 + 27 .
3% tn—1 € MUn+l
Observe that

5= (14280 (5—-0) e

_ '
=M T e 282 e4 1)
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We know that
lim ( —ﬁn)
n—>00" ly_16
S+ 1) 0
— lim min( Hn _[( er )u«n+2n82&+ Hn+1 (e +1)Mn+l]’
n—>00 Mn—16 8% pn—1 Hnt1  Spn Mnt2
% e+1
Mn —1 . Mn +2n Mn .
PPRET B EIT & Hnti (35)
1 ) + 1)6 0 1 0 e+1
- et + - +2 D], - —
1{8 [—5— + +5+”(8+)]5 [82
! ) + 1)9 _, 0 _ 1 (% £ + 1
>m1n{§—[8—2+2n8 +E+2n(8+1)], 3 [(32 +27 1}
> 0.
So, there exists n; € N such that
Hn — B, >0, Vn>ny.
Mn—10
By the facts that
2 2y _ 2 2
2(llun — vall” + lunt+1 — vall?) = llun + up+1 — 20al1” + llun — un41l
> flun — unp 1%,
Vn > ni, we obtain from (33) that
G —0)u
Snit < Sp = [1=30 = ———lupg1 — un |’
8% pn—1
"
— [——— = Bal(llun — vall* + ltng1 = va %) (36)
Mn—l‘s
5—0
=139 — OOt ﬁ”]num — ]

62“?1—1 2p—18

Owing to lim,,_, oo Uy = W, we get

1o 0
lim B, = 11m max {(—:J_i_zn&l Hon + Mn+1 +2n(8+])ﬂn+l’
n—>00 8% n—1 U1 Sitn Lo
0 1
zﬂn +27]8+ n
8 pn—1 & HUn+1
S i 0 e+ 1
=ma {( 52 2 +2n6” + < +2r;(8+1) +2n }
25 + 1)6 8—|—l
= ma {%+2n(2+a+1) — +2n 1.
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Observe that
_ 262(1—360) —86+6 —280 28%(1 —30)—8+6 ¢
7 < min{ , }.
282(e2 4+ ¢+ 1) 2682 e+ 1
Then
§—0
lim (1 -39~ O Dbn Hn_Pn
n—00 3% n—1 2p—18 2
L 6—-0) 1 By
—nlingo[l—fﬁ’e— 52 +%—?]
. -0 1 (@25+1o )
= 1—36 — — = D,
min{ 5 55 552 ne-+e+1)
6—0) 1 0 e+1
1-30 — ——— 4+ — — — —p——
5 T2 oy T )
. G6—-6) 1 @5+ _ ,
1—360 — — = D,
> min{ 52 +28 552 nEe+e+1)
6—0) 1 0 _e+1
1-30 — ——— 4+ — — — ———
52 T2 22 T
> 0.

Therefore there exists n, € N such that

5—0
tn=[1—39—(2 )un+ Mn
8% n—1 2pn—18

%]num —uy|* =0, Vnzn.
So let ng = max{n, no}, we have

Spl < Sp — 1y, Yn = no.
This completes the proof.

Theorem 1 Suppose that the conditions (C1)-(C5) are satisfied and {u,} is a sequence
generated by Algorithm 1. Then {u,} weakly converges to a point in S.

Proof From Lemma 5, we know that

sn = Ny — u* 1> = Ollun—1 — u*|1* + 20|ty — up—1°
0
F I o+ D) Yl — vaet 1P + 2tn18(AU*, tn—y — ).
S,U«rzfl Mn+1

First, we need to prove that s, > 0. Since

0
[SM“" 20 + D2 Wty — v 1 + 2001 8(AU* iy — 1) > 0,
n—1

n+1
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for any n > ng, we get that
%12 *12 2
Sp = g — w17 = Ollup—y — u™ |7 + 20|y — up—1° 37
By Lemma 1, we have

litn—1 — u* 1> = 1| @p—t — un) + (un — u®)|
= tn—1 — tnll* + llutn — ¥ + 2(un_1 — thn, up — u*) (38)

< 2llun—1 = wnl)* + 2lluy — |,
So from (37), we obtain

2 2 2 2
sn = llun — w17 = 20 |un—1 — upll® — 20llup — u™||” + 20|lup — tp—1 |

(39)
= (1 =20)|u, —u*|?, Vn = no.

Hence for any n > ng, we have s, > 0. This means that lim,_, », s, exists and
lim,—  #,;, = 0. From Lemma 5, we get

lim |[upy1 —un| =0.
n—00

By (39), we know that the sequence {u,} is bounded. At the same time, from
Uy = up + 6(uy — uy—1) and w, = uy, + 6 (1, — u,—1), we have that

Jim v, = unll = lim_ o, = unl| = 0. (40)
Therefore

ln1 = vall < lltnsr = tenll + 10w = unl] = 0. 1 — oo. (41)
We obtain that

B e L e T L e e I C)

exists. Noticing the fact that the sequence {u,} is bounded, we have u,, C u, and
un,—z € H.If we have another v,, C u,, then v,, —z. Next, we prove that z € S.
By Definition 1 and monotonicity of A, we have that

0 < (Ung+1 — Ongs v — Upg1) + ng (AUng, U — Uy 41)
= (Untl —On, U — Unyt1) + P (AVn, U — Un) + iy (AVny s Unye — Uny 1) 43)
< (U1 — Oy V= Uy +1) + Py (A0, 0 — Uy} + g (AUny, Uiy — Ung+1),
Yv e C.
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Let k — oo in (43), we get
(Av,v—2z2) >0, YveC. (44)

From Lemma 2, z € S. Assume that z; is a weak cluster point of {u,} and z; is
another weak cluster point of {u,}, z1 # z2. {u,,} and {u,,} are two subsequences of
{u,} such that u,, —z1 and u,,—z>. We need to prove that u,—z. For z1, z € S, we
get

2(”11’ 2 — Z])
2 2 2
= |lupll” + llz2 — 2117 = luw — 22 + 21l
_ 2 2 2 2,
= llupll® + llz2 — 2117 = Nun — z20I” = llz1 17 — 2{un — 22, 21)
2 2 2 2
= lup —z1+ 2107+ llz2 — 21017 = llup — 2201 = llz1 17 = 2(un — 22, 21)  (45)
2 2 2
= llup — 211”7 + 2(up — z1, 21) + llz2 — 2117 — llun — 22017 — 2{un — 22, 21)
2 2 2
= |lun — 211" = lun — 220I” + 2(z2 — 21, 21) + llz2 — 21l

2 2 2 2
= llun — 211" = llun — 22017 = 221" + llz2lI"

Let u,,—1 = u, and put it into (45), we obtain
2un-1,22—21) = lun—1 — 21l* = llun—1 — 221> = lz1l” + 2> (46)
Hence
_ 2 2 2 2
2(=0up—1,z2 — 21) = —Ollup—1 — z1lI” + Ollupn—1 — z2lI” + Ollz1 17 — Ollz2ll"

47)
Combining (45) and (47), we gain

Z(Mn - eun—l» 32 — Zl)
= (lun — 2111 = Ollun—1 — 2111%) (48)
— (lun — 221> = Ollttn—1 — z201*) + (1 = O)(llz21* = lIz11?).

By (42), we get that

Jim ey — 20017 = Ollun -1 = 211% + 210 18(A21 un 1 —21)  (49)
and

lim [luy — 220* = Olun—1 — 220° + 200 18(A22, 1 —22)  (50)

n— o0
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exist. Therefore

lim [(u, — Ouy—1,22 — 21) + n—18({Az1, up—1 — 21) — (Az2, up—1 — 22))]

n—>0oo
(51
exists. Owing to lim,_, oo 4, = 1, we also get that
(z1 —0z1,22 — 21) + 8p({Az2, 22 — 21)
= lim [(I/tnk - Qunk—lv 22 — Zl)
k—o00
+ tn—10((AZ1, Upy—1 — 21) — (Az2, Up—1 — 22))]
= lim [(u, —Ouy—1,22 — z1)
+ pn—18((Az1, up—1 — z1) — (Az2, up—1 — 22))]
= lim [(unl - eunl—h 2 — Zl)
[—o00
+ l'an—lS((AZla Up—1 — z1) — (Aza, Up—1 — 22))]
= (22 — 022,220 — z1) + $u(Az1, 22 — 21).
This means that
(1 —0)llz2 — 211> + 8u(Az1 — Aza, 20 — 21) = 0. (53)
We know that z1,z2 € S, so
(Az1 — Az2, 20 — 21) = (Az1, 22 — 21) + (Az2,21 — 22) = 0. 54
By the monotonicity of A, we have
(Az1 — Azp, 20 — 71) < 0. (55)
Hence
(Az1 — Aza, 220 — 1) = 0. (56)

Also 6 € (0, 1), from (53) and (56), we attain zo = z1. The proof is finshed.

4.2 Linear convergence

Suppose that the mapping A is y-strongly monotone, that is, if for some y > 0, we
have

(Au—Av,u—v)zyHu—sz, Yu,v € H. &)

Under this assumption, we carry out linear convergence analysis of the Algorithm 1.
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Theorem 2 Suppose that the conditions (C1)-(C3) are satisfied and Lipschitz constant

L > 0. Choose 0 € [0,00), n € (0,71), § > 1 and ¢ > 0 such that 282(1 — 30) >
8~ 04280 and 0 < 0 < min{2uoyd, 22, S21) where

§—(14+280 §—0G+1DO 630 ¢

ﬁ:mm{

282(e2+e+ 1) 2e282 7 282 e+4+1’
282(1—30) —8+6 —280 28%(1 —30)—8+6 ¢ }
282(e2 4+ ¢+ 1) ’ 2682 e+ 17

Suppose that {u,} is a sequence, which is generated by Algorithm 1. Then {u,}
linearly converges to a point in S.

Proof Let’s choose u* as a unique point of S. By Lemma 1, we have
lvn — u* 1 = (1 + 8) (un — u*) — 8(up—y — u™)|?
= (148 lun —u* 1 =8|ty — > +8(1 + 8) |y, — up—1lI*> (58)
> (1+ 8)lun — u** — Sllun—1 — u™|*.

Combining (57) and (58), we obtain

2pnl(Avy — Au*, vy — u*) — y (1 + 8)l|uy — u*||?
— 8llun—1 — w*|I* + 81+ &) lluy — un—11?)]

* * %12 (59)
= 2unl[(Avy, — Au™, v, —u™) — yllv, — u™||7]
> 0.
From (21), we know that
g1 — u*)?
< llwn — u*|I* = lluns1 — 0nll* + 200 (Avy—1 — AV, Ung1 — )
CR
= 2ptn{ AV, Uy — U*) + —— g1 — up )
3% n—1 (60)
On I On
+ (g = = un = vall* + ——— Nty — Va1 ?
8% n—1 Sin—1 Sptn—1

G+ DOy o
52/”%—1 dhn—1

+[ Mtns1 — vall?
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Putting (59) into (60), we get

i1 — u*|?
< llwp — u*|> = lluns1 — @all* = 200y (1 + 8) lup, — u*||?
+ 2un Y Slln—1 — u*1* = 24,y 81 + &)ty — 11>

+ 21 (Avp—1 — Avy, Uy g1 — vn) —2Mn<Au*, Uy — u’) 61)
(6 — )y n
+—— - + —v
Szﬂn—l ””n-‘rl ”n” (82 1 Sﬂn— Muy n”
on (8 + Do %
“Nuan = va—1l* + [ L — — w1 — vall®
Shn—1 82 pn—1 Spn—1

Using (28), (29) in (61), we attain

i1 — u*|?
< (140 = 2uny (1 + 8N un — 1> + Qunys — O)llup—1 — u*||?
+2(0 — pay 8+ )ty — un—1lI> = (1 = ) ttns1 — unll?

+ 25 (Avp—1 — Avy, Uyt — V) = 2n (Au™, vy — ™) (62)
(8 —0)n Oun n
1 — ual® + (— ltn — va?
8% n—1 8ip—1  Sptn—1
Ou G+ 1ou W
+—utn — va1 I + [ L g1 — vl
Sitn_1 82 n—1 Spn—1

Adding (22) and (25) to (62), we know

g1 — u*|?
< (460 =20y (1 + )y — u* 1> + Qunyd — Ollup—1 — u*|?
+2(0 — pny 8+ )ty — up—1lI* — (1 — ) ttns1 — unll?

" e+ 1
+ =20 + Dllug — vp—1 > + —27 i — vall®
Mn+1 Mn+1
+ 206 uns1 — va?
Mn+1
—2pn (1 + 8)(Au™, up — u™) + 2, 8 (Au™, tp—y — u™)
6 —0)pn 2 O n Hn 2
+ Szﬂnfl 1 — unll +(82un,1 e My — vyl
G+ 1Dou n
+—un — va1 P+ [ — = lluns1 — vl
Sphn_1 3% n—1 Sphn—1
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Equivalently, we attain

g1 — u*|?
< (1+6 =20y (1 + )iy — w*lI* + Qutnyd — O)llun—1 — u*||*

6—0)u
+200 — pay 8L+ 8N llun — un—1 1> + [82—]" +6 — Ulluns1 — unll?
e
Mn 2 0+ D)0 un Mn 2
+1 2ne” + - Munt1 — vall
Mn+1 Szﬂn—l Spn—1 " " (63)
" e+1 Ou uw
+[——2n + o = = llun — vall®
Mn+1 & 3 Un—1 Spn—1
W Oun
+ =20 + 1) + —llun — va_1 |’
Mn+1 Sn—1

= 2un (1 + 8)(Au™, up — u™) + 218 (Au™, up—y — u’).

Observe that v, — u,, = §(u, — u,_1), we have

v — upll* = 82ty — un—1 1% (64)

Since ©,y8(1 4+ 8) > 0, we know

2
lup1 — u|l

< (A +60 =20y (1L+ )ty — u* > + Qunyd — O)llun—1 — u*|?

8—0)u
+ [82—" +60 = 1lupy1 — un||2
Mn—1
% e+1 o 7
+126 + 82 (—"-2y s Ml —unt I g5

+ _
Mn+1 & 52[1,,,,1 Sn—1

MUn 2 (6 + DOy MUn

2 4 - Wttt — vall®
Mnt1 87 pn—1 Stn-1
iz o

+[—2n(e + 1) + ——Tllun — vyt
Mn+1 (Sl“l/nfl

=200 (1 + 8)(Au™, upy — u™) 4 21,8 (Au™, 1y — u™).
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Hence from (65), we get

[
< (A +60 =20y (1 + )ty — u* > + Qunyd — Ollup—1 — u*|?

(6—0)u
— 1 =0 = " 1ln 1 — un])?
8% in—1
Mn O in 2
n e+ 1)+ Uy — Vn—
B e+ D g s = Vel (66)
- " _ 99— "o nZT) ]Hun_l'infl”2
Mn—1 Mn—1  Mn+l €
" u 6+ 1o
e - I iy — 2
SMn—1  Mn+i 8% pn—1

=200 (1 + 8)(Au™, upy — u™) 4+ 21,8 (Au™, 1y — u™).
Thus

N1 — u* 1> 4 200, (1 + 8) (Au*, uy — u*)

w W 6+ Dou
— — e — g1 — v
dphn—1 Mn+1 3 n—1
< (46 =21,y (1 + ) luy — u*> + Qunyd — Olluy—1 — u*||?
(6 —60)in 5
—[1-6- m]“unﬂ — Uyl 67)
1z o
+ 20 + 1) + —"Tllup — va_1ll?
Hn+1 Stn—1
% Oun 82 e+1
B S )V Nl B B ity — wn—1]?
Mn—1 Mn—1 Mn+1 &

4+ 28 (Au*, uy_1 — u™).

Owingtod > land 0 <6 < Weget82(1 —60)— (5 —06) >0, then

o
25+1>

. @=Opn, . @-=0)
i O
82(1—6)— (5 —0) (68)
> 0.
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Also, owing ton <77 < 8-30 ¢ \e have

282 e+1°
b 0 82 1 1
lim [P g DHn _ OTHn, BT L5 3g g2yt
=00 Up—1 Mn—1 Mn+1 & &
1 (69
~5—30—sgitl
I
> 0.

2
So there exists n3 € N such that % —20— G _ Sngpetl S gand1—0 —

Mn—1 Mn+1 &
%LM]H > 0, Vn > nj. It follows from (67) that

N1 — u® 1> 4 200, (1 + 8)(Au*, uy — u*)

1 M G+ 1ou
1 — e — " llup 1 — va
Sin—1  Mn+1 8% pn—1
< (1460 =21,y (1 + )y — u*1> + Qunyd — Olluy—1 —u*|>  (70)
1z O
+ 20 + 1) + —"llup — va—1l?
/vlan+1 (Sl‘l’ﬂ*l

4+ 2un8({Au*, upy_1 —u*), VYn > ns.

Let

MKn On

Mn+1 277(8 + 1) + Spn—1 /J/n(S } (71)
Hn—1 -1 2 GO o (1 +8)
st — E=tne e Ha—1(1 +8)

', = max{

We know that

Hn O1n
lim [ Mn+1 277(8 + 1) + Stn—1

Mn—1 Hn—1 2 (6+1)0,—1
n—oo T 2778 — —azll«n—z
0
_ 2+ D+5 72)
1 5+1)6
35— 27}82 _ 82)

28 (e+1) 408
8 —2ne282 — (8 + 16’

5—(3+1)0

1 5—(1425)6
262§

Owing ton < and n < et

we get

218%(e + 1) + 66

0< <
8§ —2ne?s2 — (5 +1)8

(73)
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Therefore there exists n4 € N such that

Ldp(e + 1) + ol

Mn+1 Sphn—1
0< <1, Vn>ny. 74
Hn—1 Mn—lanZ (0 +DOpun—y ’ =4 (74)
Spn—2 Mn SZMH,Z

Let & = sup&,, it is obvious that & € (0, 1). Put n5 = max{n3, nq4}, for any n > ns,
let

s = llun —u*||?,
Iz u 8+ Do
tp1 = [——— — =20 — ———"1[lups1 — val*
Spn—1  Mn+1 8% n—1

+ 20, (1 + ) {(Au™, u, — u™).
By (70), we attain

Sp41 + It
<(A+0 =2uy (A +8))sy + Cupyd — 0)sp—1 + &nty (75)
Cpnyd —0)2puny (1 +68) —0)

=[1-Q2 1+6)—06 _ 1.
[ Cuny (1 +9) Msn + 2,y (14 8)—0 Sn—1 + &nty

Let p = limy o0 (21, y (1 +8) — 0). Owing to 0 < 6 < min{2ugys, %) <

21,y 8, then p > 0. Therefore, there exists ng € N and o € (0, 1) such that

Qunyd —0)2upy (1 +35) —0)
2uny(1+8)—6

<op<p, Vn>ng. (76)

We know that p,+1 < un, let n; = max{ns, ng}, then we obtain from (75) that
Sntl + a1 < (A —p)sy +0psp—1 +Ety, Yn > nj. 77
Let r = max {o, £}, then r € (0, 1). Thus we obtain
Sn+l T Int1 < (1 — p)sy +rpsp—1 +rty, Yn > nj.

Therefore, by Lemma 4, we have that {u,} linearly converges to a point in S. This
completes the proof.

5 Modified algorithm

If appropriate parameters are selected, Algorithm 1 is able to effectively accelerate
the convergence speed, but the main shortcoming of Algorithm 1 is that it can not
completely restore some special algorithms in the literature. Therefore, we are going
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to do the following improvements and optimize our algorithm. The conditions (C1)-
(C3) of Algorithm 1 are still established, in this situation, we add two additional
parameter conditions (C6) and (C7):

(C6)§ >0, > 1.

(CT)0 €10,00),0 <6 < 25‘% and 282(1 — 30) > 8 — 0 + 286.

Then, we provide a new modified algorithm as below:

Algorithm 2 Modified projected reflected gradient method with adaptive step size.
Initialization: Let ;1 > 0 and set n := 0. Assume

o 8—(1428)0 (6-0)e—1

T e e 22 e

262(1—360) —5+0 —280 282(1—30) —8+60¢e—1
282(s2 +¢) ’ 252 e

s

choose nn € (0,7) and Let ug € C, vg, wp € H be any three starting points.
Iterative Steps: u,,; | is determined via the previous vy, and w; as follows:
Step 1. Compute

Uptl = Upt1 +8WUpt1 — un), (78)

upy1 = Po(wn — unAvy),
Opt1 = Upt1 +OUpt1 — Un).

If we have w;, = vy = u,41, then Stop. Conversely, go to Step 2.

Step 2. Let
&

e—1

. 2 2 2 2
on = ellv—1 —unll” + [l —vpll” + & Hun+l —vull5,

and turn the original step size into a new

Hns if(Avy — Avp—1, vn —upy1) <0,
Hn+1 =

H NPn :
min{ Aon—Avy—1 0n —in 1) n}, otherwise.

Step 3. Next: set n := n + 1 and go to Step 1.

Remark 2 Using the ideas of proof, which are similar to Algorithm 1, we can attain
the weak convergence and linear convergence of Algorithm 2 without striking a blow.

Remark 3 Algorithm 2 is simplified to Algorithm 1 in [18], when 6 = 0 and £ = +/2.
Also, Algorithm 2 can be restored to Algorithm 1 in [11], only when ¢ = /2. If
we choose 0 = 0,5 = 1 and ¢ = «/5, we can get Algorithm 3.1 in [7]. And then
Algorithm 2 can be an extension of the other two algorithms in [8] and [9].

Remark 4 It is evident to discover that we can make numerous accelerated improve-
ments and repeatedly optimize our algorithm by analogizing the step size rules of
Algorithms 1 and 2. Meanwhile, those improvements are of great significance.
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6 Numerical experiments

In this section, we present two numerical tests occurring in finite- and infinite-
dimensional real Hilbert spaces to demonstrate the computational efficiency of the
proposed algorithm and compare it with some recent algorithms in the literature [9, 11,
18]. All the programs were implemented in MATLAB 2018a on a Intel(R) Core(TM)
15-8250S CPU @1.60GHz computer with RAM 8.00 GB.

Example 1 Consider the linear operator A : R” — R (m = 20) in the form
Au) = Mu +gq,

where g € R™ and M = NNT + QO+ D, Nisam x m matrix, Q is am x m skew-
symmetric matrix, and D is a m x m diagonal matrix with its diagonal entries being
nonnegative (hence M is positive symmetric definite). The feasible set C is given by

C:{ueRm:—2§u,~55,i:1,...,m}.

It is clear that A is monotone and Lipschitz continuous with constant L = ||M]||. In
this experiment, all entries of N, Q are generated randomly in [—2, 2], D is generated
randomly in [0, 2] and ¢ = 0. It is easy to check that the solution of the variational
inequality problem is u* = 0. Take ¢ € {1,2,3,4},0 = 0.05,§ = 1.1, n = 0.997,

——Our Alg. 3.1,e=1
——Our Alg. 3.1,e =2
—a—Our Alg. 3.1,e=3
——QOur Alg. 3.1,e =4

-6 1 1 1 1 ! 1 I 1 1
10
0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

Fig. 1 Numerical results of our Algorithm 1 with different parameters ¢ for Example 1
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and po = 0.01 for our Algorithm 1(denoted as Alg.3.1). The maximum number of
iterations 1000 is used as a stopping criterion. Figure 1 shows the numerical behavior
of D,, = |lu, — u*|| of our Algorithm 1 with different parameter &.

Next, we compare the proposed Algorithm 1 with some related algorithms in the
literature [9, 11, 18]. The parameters of these methods are set as follows.

Our Algorithm 1: ¢ = 1,60 = 0.05,§ = 1.1, n = 0.997, and o = 0.01.

Iyiola and Shehu’s Algorithm 1 (abbreviated as IS Alg. 1) [11]: 0 = 0.05,6 = 1.1,
n=0.994, and A9 = 0.01.

Thong, Gibali and Vuong’s Algorithm 1 (abbreviated as TGV Alg. 1) [18]:0 = 0.6,
uw=0.994, and A9 = 0.01.

Dong, He and Liu’s Algorithm 1 (abbreviated as DHL Alg. 1) [9]: 6 = 0.04,
§=1.1,a =0.99@, and Ay = 0.01.

The numerical results of the proposed Algorithm 1 and the comparison algorithms
are shown in Fig. 2.

Example 2 In this example, we consider our problem in the infinite-dimensional
Hilbert space H = L2%([0, 1]) with inner product

1
(u, v) ::/ u(t)v(t)dt, VYu,v e H,
0

—e—Our Alg. 3.1
105 £/~ 1S Alg. 1
—a—TGV Alg. 1

-6 1 L 1 1 L 1 | 1 1
0 100 200 300 400 500 600 700 800 900 1000
Number of iterations

Fig.2 Numerical results for all algorithms in Example 1
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1 1/2
llul = </ |u(t)|2dt> , YueH.
0

Let the feasible set be the unit ball C := {u € H : ||u|]| < 1}. Define an operator
A:C — Hby

and norm

1
(Au)(t) = / (u@)—G(t,s)gu(s)))ds + h(t), tel0,1],uecC,
0

where s .
2tse' ™ 2te
Gt,s) = ——, gu)=cosu, h(t)=———.
eve? — 1 eve? — 1

Itis known that A is monotone and L-Lipschitz continuous with L = 2. The projection
on C is inherently explicit, that is,

e if flull > 1

Pr(u) = | Tul* ! ;

c ) {u, if ) < 1.
Through a straightforward calculation, we know that the solution of the variational
inequality problem is u*(#) = 0. Choose ¢ € {1,2,3,4},6 = 0.01,§ = 1.1, n =
0.997, o = 1, and up(t) = wo(t) = vo(t) = v_1(t) = 10sin(¢) for our Algorithm 1.

10° . . . .
10" £
102 ¢
107 F
I3 N
_ I
10 ¢
107 F
f|—e—Our Alg. 3.1,e =1
1076 £|—¢—Our Alg. 3.1,e=2
- |—a—Our Alg. 3.1, =3
[|—+—Our Alg. 3.1, e =4
10»7 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Number of iterations

Fig.3 Numerical results of our Algorithm 1 with different parameters ¢ for Example 2
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100

10!

—o—Our Alg. 3.1
6 L|—o—IS Alg. 1

—o—Our Alg. 3.1
6 L|—o—IS Alg. 1

—=-TGV Alg. 1 o —=-TGV Alg. 1
——DHL Alg. 1 1 ——DHL Alg. 1
e 1 L ]
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of iterations Number of iterations
(a) uo(t) = u1(t) = 10t3 (b) uo(t) = w1 (¢) = 10cos(t)
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Fig.4 Numerical results for all algorithms in Example 2

The maximum number of iterations 50 is used as a stopping criterion. Figure 3 shows
the numerical behavior of D, = |u,(¢t) — u™(t)|| of our Algorithm 1 with different
parameter €.

Next, we compare the proposed Algorithm 1 with some known algorithms in the
literature [9, 11, 18]. The parameters of all algorithms are set as follows.

— Our Algorithm 1: ¢ =0.5,0 =0.01,6 = 1.1, = 0.997, and o = 1.

— lyiola and Shehu’s Algorithm 1 (abbreviated as IS Alg. 1) [11]: 6 =0.1,6 = 1.1,
n =099, and Ag = 1.

— Thong, Gibali and Vuong’s Algorithm 1 (abbreviated as TGV Alg. 1) [18]:0 = 0.6,
n =099, and A9 = 1.

— Dong, He and Liu’s Algorithm 1 (abbreviated as DHL Alg. 1) [9]: 6 = 0.04,
§=1.1,a =099, and Ay = 1.

The maximum number of iterations 50 is used as a common stopping criterion
for all algorithms. With four different initial points, the numerical behavior of D, =
lluy, (1) — u*(¢)| of all algorithms is described in Fig. 4.

We have the following observations for Examples 1 and 2.

1. From Figs. 1, 2, 3, and 4, it can be seen that the error D), of the proposed Algorithm
1 converges to 0 as the number of iterations increases, which indicates that the
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sequence of iterations generated by the proposed Algorithm 1 converges to the
solution of the problem.

2. Our Algorithm 1 has a faster convergence speed when the appropriate parameters
¢ are chosen, as shown in Figs. 1 and 3. Therefore, a suitable parameter & can be
chosen to improve the convergence speed of the algorithm in practical applications.

3. It can be seen from Figs.2 and 4 that our proposed Algorithm 1 has a faster
convergence speed than some known algorithms in the literature [9, 11, 18] in the
case of choosing some suitable parameters and that these results are not related to
the choice of initial values.

4. Notice that our Algorithm 1 can work adaptively without knowing the prior infor-
mation about the Lipschitz constants of the operators involved. If the Lipschitz
constants of the involved operators are unknown, the fixed-step algorithms pro-
posed in the literature [7, 20] for solving monotone variational inequality problems
will not be available. Thus, the adaptive algorithm presented in this paper has a
broader range of applications.

In conclusion, the algorithm proposed in this paper is efficient and robust.

7 Conclusions

In this work, we present acommon version of projected reflected gradient method about
solving variational inequalities in real Hilbert spaces. We certify that the sequence
formed by our method converges weakly to a solution of the VIP. Linear convergence
theorems are gained on the condition that the mapping A is strongly monotone. Also,
we innovate a modified algorithm superior to our own algorithm under corresponding
conditions. Numerical experiments that can show the efficiency and applicability of
our methods are given in detail.
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