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Abstract
The paper presents two inertial viscosity-type extragradient algorithms for finding
a common solution of the variational inequality problem involving a monotone and
Lipschitz continuous operator and of the fixed point problem with a demicontractive
mapping in real Hilbert spaces. Our algorithms use a simple step size rule which is
generated by some calculations at each iteration. Two strong convergence theorems
are obtained without the prior knowledge of the Lipschitz constant of the operator.
The numerical behaviors of the proposed algorithms in some numerical experiments
are reported and compared with previously known ones.

Keywords Variational inequality · Fixed point problem · Subgradient extragradient
method · Tseng’s extragradient method · Inertial method
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with the inner
product 〈·, ·〉 and the induced norm ‖ · ‖. The main purpose of this paper is for find-
ing a common solution of variational inequality problems and fixed point problems
in real Hilbert spaces. The motivation for studying such problems is that it is pos-
sible to apply them to mathematical models whose constraints can be expressed as
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variational inequalities and/or fixed point problems. This situation occurs especially in
practical problems, such as signal processing, compositeminimization problems, opti-
mal control problems and image restoration; see, e.g., [1–5]. Let us recall the involved
problems. The variational inequality problem (in short, VI) for operator A : H → H
on C is to find a point p ∈ C such that

〈Ap, x − p〉 ≥ 0, ∀x ∈ C . (VI)

Let VI(C, A) be the solution set of (VI). Variational inequalities theory arises in
various models for a large number of mathematical, engineering, physical and other
problems. In recent years, considerable interest has been shown in developing efficient
and implementable numerical methods of variational inequalities, see, e.g., [6–11]
and the references therein. There have been two general methods to study the mono-
tone variational inequality problem under mild conditions: regularized methods and
projection-type methods. In this paper, we focus on projection-based methods. The
simplest projection method to solve (VI) is the projected gradient method:

xn+1 = PC (xn − τn Axn) .

Note that only one projection onto the feasible set is performed. However, the con-
vergence of the projected gradient method requires a slightly strong hypothesis that
the operator is strongly monotone or inverse strongly monotone. To avoid this strong
hypothesis, Korpelevich [12] introduced the extragradientmethod to solve saddle point
problems in Euclidean spaces. Indeed, the extragradient method is of the form:

{
yn = PC (xn − τ Axn) ,

xn+1 = PC (xn − τ Ayn) ,
(1.1)

where operator A is monotone and L-Lipschitz continuous, PC is denoted by the
metric projection fromH onto C and τ ∈ (0, 1/L). It is know that the sequence {xn}
generated by the process (1.1) converges to an element in VI(C, A) when the solution
set VI(C, A) is nonempty.

Note that calculating the projection onto a closed convex set C is equivalent to
finding the solution of the minimum distance problem. We point out that the extra-
gradient method requires to calculate two projections onto C in each iteration. This
may require a prohibitive amount of computation time when C is a general closed and
convex set. To overcome this shortcoming, Censor, Gibali and Reich [13] obtained
the subgradient extragradient method by modifying the extragradient algorithm. The
purpose of this modification is to replace the second projection on C with a projec-
tion onto a half-space. It is worth noting that the projection onto a half-space can be
calculated explicitly. Indeed, they obtained the following algorithm:

⎧⎪⎨
⎪⎩

yn = PC (xn − τ Axn) ,

Tn = {x ∈ H | 〈xn − τ Axn − yn, x − yn〉 ≤ 0} ,

xn+1 = PTn (xn − τ Ayn) ,

(1.2)

123



Viscosity-type inertial extragradient algorithms for solving VIs and FPPs 1389

where τ ∈ (0, 1/L) and the operator A is monotone and L-Lipschitz continuous.
If the solution set VI(C, A) is nonempty, then the sequence {xn} generated by (1.2)
convergesweakly to a solution of (VI). The secondmethod is the Tseng’s extragradient
method proposed by Tseng in [14]:

{
yn = PC (xn − τ Axn) ,

xn+1 = yn − τ (Ayn − Axn) ,
(1.3)

where τ ∈ (0, 1/L) and the operator A is monotone and L-Lipschitz continuous. The
subgradient extragradient method and the Tseng’s extragradient method only require
to calculate one projection onto the feasible set in each iteration.

Let U : C → C be a nonlinear mapping. A point x ∈ H is called a fixed point of
mapping U if U x = x . The set of fixed points of U is denoted by Fix(U ). The fixed
point problem (shortly, FPP) is defined as follows:

find p ∈ C such that U p = p . (FPP)

Our focus in this paper is to find a common solution of (VI) and (FPP). That is, we
find a point p such that

p ∈ Fix(U ) ∩ VI(C, A) . (VIFPP)

There are many numerical algorithms have been proposed for solving (VIFPP) in
infinite-dimensional spaces, see, e.g., [15–18] and the references therein. Takahashi
and Toyoda [19] proposed an iterative method for finding a solution of (VIFPP) as
follows:

xn+1 = (1 − αn) xn + αnU PC (xn − τn Axn) , (1.4)

where mapping A : C → H is λ-inverse strongly monotone and mapping U :
C → C is nonexpansive. They proved that the sequence {xn} generated by (1.4)
converges weakly to a solution of (VIFPP) under some conditions. Recently, under
the assumptions that mapping A is Lipschitz continuous monotone and mapping U is
nonexpansive,Censor,Gibali andReich [20] proved that the iterative schemegenerated
by their algorithm (1.5) converges weakly to a solution of (VIFPP). Their algorithm
is described as follows:⎧⎪⎨

⎪⎩
yn = PC (xn − τ Axn) ,

Tn = {x ∈ H | 〈xn − τ Axn − yn, x − yn〉 ≤ 0} ,

xn+1 = αn xn + (1 − αn) U PTn (xn − τ Ayn) .

(1.5)

We note that norm convergence is generally desirable than weak convergence
in infinite-dimensional spaces. Therefore, a natural question is how to design an
algorithm that provides strong convergence to solve the (VIFPP) in the sense of
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infinite-dimensional Hilbert spaces, when mapping A is only monotone and Lips-
chitz continuous. Kraikaew and Saejung [21] combined the subgradient extragradient
method and theHalpernmethod, andproposed an algorithmwhich is called theHalpern
subgradient extragradient method (shortly, HSEGM) for solving (VIFPP). Their algo-
rithm is of the form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

yn = PC (xn − τ Axn) ,

Tn = {x ∈ H | 〈xn − τ Axn − yn, x − yn〉 ≤ 0} ,

zn = αn x0 + (1 − αn) PTn (xn − τ Ayn) ,

xn+1 = βn xn + (1 − βn) U zn ,

(HSEGM)

where τ ∈ (0, 1/L), {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = +∞ and {βn} ⊂
[a, b] ⊂ (0, 1), A is a monotone and L-Lipschitz continuous mapping and U : H →
H is a quasi-nonexpansive mapping. They proved that the sequence {xn} generated
by the iterative scheme (HSEGM) converges strongly to PVI(C,A)∩Fix(U )(x0).

In this paper, we focus on U is a demicontractive mapping, which covers the quasi-
nonexpansive mappings. Recently, Thong and Hieu [22] combined the subgradient
extragradient method and theMann-likemethod, and proposed amodified subgradient
extragradient algorithm to find common solution elements of the variational inequality
problem solution set and the fixed point set of a demicontractivemapping. Indeed, their
algorithm is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = PC (xn − τ Axn) ,

Tn = {x ∈ H | 〈xn − τ Axn − yn, x − yn〉 ≤ 0} ,

zn = PTn (xn − τ Ayn) ,

xn+1 = (1 − αn − βn) zn + βnU zn ,

(MSEGM)

where τ ∈ (0, 1/L), {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = +∞, βn ∈ (a, b) ⊂
(0, (1 − λ) (1 − αn)) for some a > 0, b > 0, A : H → H is a monotone and
L-Lipschitz continuous mapping and U : H → H is a λ-demicontractive mapping
such that (I − U ) is demiclosed at zero. Assume that VI(C, A) ∩ Fix(U ) 
= ∅, they
proved that the iterative sequence {xn} generated by (MSEGM) converges strongly to
an element p ∈ VI(C, A)∩Fix(U ), where ‖p‖ = min{‖z‖ : z ∈ VI(C, A)∩Fix(U )}.

Note that the algorithms (HSEGM) and (MSEGM) need to know the prior knowl-
edge of the Lipschitz constant of the mapping A. However, in many cases, we cannot
obtain the prior knowledge of the operator A in advance. Recently, Thong and Hieu
[23] introduced two extragradient-viscosity algorithms for solving (VIFPP). They used
a simple rule to automatically update the step size and thus the Lipschitz constant of
the mapping is not required. Indeed, their algorithms are described as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = PC (xn − τn Axn) ,

Tn = {x ∈ H | 〈xn − τn Axn − yn, x − yn〉 ≤ 0} ,

zn = PTn (xn − τn Ayn) ,

xn+1 = αn f (xn) + (1 − αn) [(1 − βn)zn + βnU zn] ,

(VSEGM)
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and

⎧⎪⎨
⎪⎩

yn = PC (xn − τn Axn) ,

zn = yn − τn (Ayn − Axn) ,

xn+1 = αn f (xn) + (1 − αn) [(1 − βn)zn + βnU zn] ,

(VTEGM)

where Algorithms (VSEGM) and (VTEGM) update the step size {τn} by the following
rule:

τn+1 =
{
min

{
μ‖xn−yn‖

‖Axn−Ayn‖ , τn

}
, if Axn − Ayn 
= 0 ;

τn, otherwise ,

where τ0 > 0, μ ∈ (0, 1), αn ⊂ (0, 1), βn ⊂ (a, 1 − λ) ⊂ (0, 1), A is a mono-
tone and Lipschitz continuous mapping, U is a λ-demicontractive mapping and f
is a contraction mapping. Under some mild assumptions, the sequences generated
by (VSEGM) and (VTEGM) converge strongly to q ∈ Fix(U ) ∩ VI(C, A), where
q = PFix(U )∩VI(C,A)( f (q)).

In recent years, the development of fast iterative algorithms has attracted enor-
mous interest, especially for inertial technology, which is based on discrete versions
of a second-order dissipative dynamic system (see [24,25] for more details). Many
researchers have constructed various fast iterative algorithms by using inertial tech-
nology, see, e.g., [26–31] and the references therein. One of the common features of
these algorithms is that the next iteration depends on the combination of the previous
two iterations. Note that this minor change greatly improves the performance of the
algorithm.

Motivated and inspired by the above work, in this paper, we introduce two inertial
extragradient algorithms for finding a common element of the solution set of the
monotone variational inequality problem and the fixed point set of a demicontractive
mapping in real Hilbert spaces. We provide a choice of step size rule which allows the
algorithms toworkwithout the previously known information of the Lipschitz constant
of the mapping. Under suitable conditions, we prove that the sequences generated by
the suggested algorithms converge strongly to a solution of variational inequality
problems and fixed point problems. Some numerical experiments are presented to
support the theoretical results. Our numerical results show that the new algorithms
have a better convergence speed than the existing ones [21–23].

The remainder of this paper is organized as follows. In Section 2, we recall some
preliminary results and lemmas for further use. Section 3 analyzes the convergence
of the proposed algorithms. In Section 4, some numerical examples are provided to
illustrate the numerical behavior of the proposed algorithms and compare them with
other ones. Finally, we give a brief summary of the paper in Section 5, the last section.
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2 Preliminaries

Let C be a nonempty closed and convex subset of a real Hilbert space H . The weak
convergence and strong convergence of {xn} to x are represented by xn⇀x and xn →
x , respectively. For each x, y ∈ H and α ∈ R, we have the following facts:

1. ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2;
2. ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
3. ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.
For every point x ∈ H , there exists a unique nearest point in C , denoted by PC (x)

such that PC (x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric projection ofH
ontoC . It is known that PC is nonexpansive and PC has the following basic properties:

• 〈x − PC (x), y − PC (x)〉 ≤ 0, ∀y ∈ C ;
• ‖PC (x) − PC (y)‖2 ≤ 〈PC (x) − PC (y), x − y〉 , ∀y ∈ H .

Definition 2.1 ( [32]) Assume that T : H → H is a nonlinear operator with
Fix(T ) 
= ∅. Then, I − T is said to be demiclosed at zero if for any {xn} in H ,
the following implication holds:

xn⇀x and (I − T )xn → 0 �⇒ x ∈ Fix(T ) .

Definition 2.2 Recall that a mapping T : H → H is said to be:

• L-Lipschitz continuous with L > 0 if

‖T x − T y‖ ≤ L‖x − y‖, ∀x, y ∈ H .

• η-strongly monotone if there exists η > 0 such that

〈T x − T y, x − y〉 ≥ η‖x − y‖, ∀x, y ∈ H .

• η-inverse strongly monotone if there exists η > 0 such that

〈T x − T y, x − y〉 ≥ η‖T x − T y‖2, ∀x, y ∈ H .

• monotone if

〈T x − T y, x − y〉 ≥ 0, ∀x, y ∈ H .

• quasi-nonexpansive if

‖T x − z‖ ≤ ‖x − z‖, ∀z ∈ Fix(T ), x ∈ H .

• λ-strictly pseudocontractive with 0 ≤ λ < 1 if

‖T x − T y‖2 ≤ ‖x − y‖2 + λ‖(I − T )x − (I − T )y‖2, ∀x, y ∈ H .
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• β-demicontractive with 0 ≤ β < 1 if

‖T x − z‖2 ≤ ‖x − z‖2 + β‖(I − T )x‖2, ∀z ∈ Fix(T ), x ∈ H ,

or equivalently

〈T x − x, x − z〉 ≤ β − 1

2
‖x − T x‖2, ∀z ∈ Fix(T ), x ∈ H . (2.1)

Remark 2.1 From the above definitions, we have the facts that:

• The class of demicontractive mappings includes the class of quasi-nonexpansive
mappings.

• Every strictly pseudocontractive mapping with a nonempty fixed point set is demi-
contractive.

We need the following lemmas to prove the convergence of our algorithms.

Lemma 2.1 ( [21]) Let A : H → H be a monotone and L-Lipschitz continuous
mapping on C. Let S = PC (I − μA), where μ > 0. If {xn} is a sequence in H
satisfying xn⇀q and xn − Sxn → 0, then q ∈ VI(C, A) = Fix(S).

Lemma 2.2 ( [33]) Let {pn} be a positive sequence, {qn} be a sequence of real numbers,
and {σn} be a sequence in (0, 1) such that

∑∞
n=1 σn = ∞. Suppose that

pn+1 ≤ σnqn + (1 − σn) pn, ∀n ≥ 1 .

If lim supk→∞ qnk ≤ 0 for every subsequence
{

pnk

}
of {pn} satisfying lim infk→∞(

pnk+1 − pnk

) ≥ 0, then limn→∞ pn = 0.

Lemma 2.3 Let U : H → H be a β-demicontractive with Fix(U ) 
= ∅ and let
Uλ = (1 − λ)I + λU, where λ ∈ (0, 1 − β). Then:

(1) Fix(U ) = Fix(Uλ);
(2) ‖Uλx − z‖2 ≤ ‖x − z‖2 − λ(1 − β − λ) ‖(I − U ) x‖2 , ∀x ∈ H , z ∈ Fix(U );
(3) Fix(U ) is a closed convex subset of H .

Proof (1) It is obvious.
(2) From the definition of Uλ and (2.1), we have

‖Uλx − z‖2 = ‖(1 − λ)x + λU x − z‖2
= ‖x − z‖2 + 2λ〈x − z, U x − x〉 + λ2‖U x − x‖2
≤ ‖x − z‖2 + λ(β − 1)‖U x − x‖2 + λ2‖U x − x‖2
= ‖x − z‖2 − λ(1 − β − λ) ‖(I − U ) x‖2 .

(3) It is a consequence of Proposition 1 in [34].
��
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3 Main results

In this section, we introduce two new inertial extragradient algorithms for solving vari-
ational inequality problems and fixed point problems and analyze their convergence.
First, we assume that our proposed algorithms satisfy the following conditions.

(C1) The solution set Fix(U ) ∩ VI(C, A) 
= ∅.
(C2) The mapping A : H → H is monotone and L-Lipschitz continuous.
(C3) ThemappingU : H → H isλ-demicontractive such that (I−U ) is demiclosed

at zero.
(C4) The mapping f : H → H is ρ-contraction with constant ρ ∈ [0, 1).
(C5) Let {εn} be a positive sequence such that limn→∞ εn

αn
= 0, where {αn} ⊂ (0, 1)

satisfies limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Let {βn} be a real sequence in
(0, 1) such that {βn} ⊂ (a, 1 − λ) for some a > 0.

3.1 The viscosity-type inertial subgradient extragradient algorithm

Now, we introduce a viscosity-type inertial subgradient extragradient algorithm for
solving variational inequality problems and fixed point problems. The Algorithm 3.1
is of the form.

Algorithm 3.1 The viscosity-type inertial subgradient extragradient algorithm
Initialization: Take θ > 0, τ1 > 0, μ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set wn = xn + θn

(
xn − xn−1

)
, where

θn =
⎧⎨
⎩min

{
εn∥∥xn − xn−1

∥∥ , θ

}
, if xn 
= xn−1 ;

θ, otherwise .

(3.1)

Step 2. Compute yn = PC (wn − τn Awn).
Step 3. Compute zn = PTn (wn − τn Ayn), where the half-space Tn is defined by

Tn := {x ∈ H | 〈wn − τn Awn − yn , x − yn〉 ≤ 0} .

Step 4. Compute xn+1 = αn f (xn) + (1 − αn) [(1 − βn) zn + βnU zn ], and update

τn+1 =
⎧⎨
⎩min

{
μ ‖wn − yn‖
‖Awn − Ayn‖ , τn

}
, if Awn − Ayn 
= 0 ;

τn , otherwise .

(3.2)

Set n := n + 1 and go to Step 1.

Remark 3.1 It follows from (3.1) that

lim
n→∞

θn

αn
‖xn − xn−1‖ = 0 .
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Indeed,wehave θn ‖xn − xn−1‖ ≤ εn for alln ≥ 1,which togetherwith limn→∞ εn
αn

=
0 implies that

lim
n→∞

θn

αn
‖xn − xn−1‖ ≤ lim

n→∞
εn

αn
= 0 .

The following lemmas are quite helpful to analyze the convergence of the algorithm.

Lemma 3.1 The sequence {τn} generated by (3.2) is a nonincreasing sequence and

lim
n→∞ τn = τ ≥ min

{
τ1,

μ

L

}
.

Proof It follows from (3.2) that τn+1 ≤ τn for all n ∈ N. Hence, {τn} is nonincreasing.
On the other hand, we get ‖Awn − Ayn‖ ≤ L ‖wn − yn‖ since A is L-Lipschitz
continuous. Thus,

μ
‖wn − yn‖

‖Awn − Ayn‖ ≥ μ

L
, if Awn 
= Ayn ,

which together with (3.2) implies that

τn ≥ min
{
τ1,

μ

L

}
.

Therefore, limn→∞ τn = τ ≥ min
{
τ1,

μ
L

}
since the sequence {τn} is nonincreasing

and lower bounded. ��
Lemma 3.2 ( [35]) Assume that Condition (C2) holds. Let {zn} be a sequence gener-
ated by Algorithm 3.1. Then

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ

τn

τn+1

)
‖yn − wn‖2 −

(
1 − μ

τn

τn+1

)
‖zn − yn‖2

(3.3)

for all p ∈ VI(C, A).

Theorem 3.1 Assume that Conditions (C1)–(C5) hold. Then the sequence {xn} gen-
erated by Algorithm 3.1 converges to q ∈ Fix(U ) ∩ VI(C, A) in norm, where
q = PFix(U )∩VI(C,A)( f (q)).

Proof Note that VI(C, A) is a closed convex subset, and Fix(U ) is also a closed
convex subset by Lemma 2.3. Hence, the mapping PFix(U )∩VI(C,A)( f ) : H → H
is a contraction. From the Banach contraction principle, there exists a unique point
q ∈ H such that q = PFix(U )∩VI(C,A)( f (q)). In particular, q ∈ Fix(U ) ∩ VI(C, A)

and

〈 f (q) − q, z − q〉 ≤ 0, ∀z ∈ Fix(U ) ∩ VI(C, A) .
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We divide the proof into four parts.
Claim 1. The sequence {xn} is bounded. Indeed, put tn = (1 − βn) zn +βnU zn . From
Lemma 2.3 (ii), we have

‖tn − q‖2 ≤ ‖zn − q‖2 − βn (1 − λ − βn) ‖U zn − zn‖2 .

In view of Lemma 3.2 and {βn} ⊂ (a, 1 − λ), we obtain

‖tn − q‖2 ≤ ‖wn − q‖2 −
(
1 − μ

τn

τn+1

)
‖yn − wn‖2 −

(
1 − μ

τn

τn+1

)
‖zn − yn‖2

− βn (1 − λ − βn) ‖U zn − zn‖2 .

(3.4)

According to Lemma 3.1, we get

lim
n→∞

(
1 − μ

τn

τn+1

)
= 1 − μ > 0 ,

which implies that there exists n0 ∈ N such that (1− μ τn
τn+1

) > 0, ∀n ≥ n0. By (3.4),
one has

‖tn − q‖ ≤ ‖wn − q‖ , ∀n ≥ n0 . (3.5)

From the definition of wn , we can write

‖wn − q‖ = ‖xn + θn (xn − xn−1) − q‖
≤ ‖xn − q‖ + αn · θn

αn
‖xn − xn−1‖ .

(3.6)

ByRemark 3.1, we have θn
αn

‖xn − xn−1‖ → 0 as n → ∞. Thus, there exists a constant
M1 > 0 such that

θn

αn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1 . (3.7)

Combining (3.5), (3.6) and (3.7), we find

‖tn − q‖ ≤ ‖wn − q‖ ≤ ‖xn − q‖ + αn M1, ∀n ≥ n0 . (3.8)

123



Viscosity-type inertial extragradient algorithms for solving VIs and FPPs 1397

Using (3.8), we obtain

‖xn+1 − q‖ = ‖αn f (xn) + (1 − αn) tn − q‖
≤ αn ‖ f (xn) − f (q)‖ + αn‖ f (q) − q‖ + (1 − αn) ‖tn − q‖
≤ αnρ ‖xn − q‖ + αn‖ f (q) − q‖ + (1 − αn) ‖wn − q‖
≤ [1 − αn(1 − ρ)] ‖xn − q‖ + αn(1 − ρ)

‖ f (q) − q‖ + M1

1 − ρ

≤ max
{

‖xn − q‖ ,
‖ f (q) − q‖ + M1

1 − ρ

}

≤ · · · ≤ max
{ ∥∥xn0 − q

∥∥ ,
‖ f (q) − q‖ + M1

1 − ρ

}
, ∀n ≥ n0 ,

which implies that the sequence {xn} is bounded. So the sequences {wn}, { f (xn)} , {yn}
and {zn} are also bounded.
Claim 2.

(1 − αn)
(
1 − μ

τn

τn+1

)
‖yn − wn‖2 + (1 − αn)

(
1 − μ

τn

τn+1

)
‖zn − yn‖2

+ (1 − αn) βn (1 − λ − βn) ‖U zn − zn‖2

≤ ‖xn − q‖2 − ‖xn+1 − q
∥∥∥2 + αn

∥∥∥ f (xn) − q‖2 + αn M2

for some M2 > 0. Indeed, it follows from (3.8) that

‖wn − q‖2 ≤ (‖xn − q‖ + αn M1)
2

= ‖xn − q‖2 + αn

(
2M1 ‖xn − q‖ + αn M2

1

)
≤ ‖xn − q‖2 + αn M2

(3.9)

for some M2 > 0. Using (3.4) and (3.9), we have

‖xn+1 − q‖2 = ‖αn ( f (xn) − q) + (1 − αn) (tn − q)‖2
≤ αn ‖ f (xn) − q‖2 + (1 − αn) ‖tn − q‖2
≤ αn ‖ f (xn) − q‖2 + ‖xn − q‖2

+ αn M2 − (1 − αn)
(
1 − μ

τn

τn+1

)
‖yn − wn‖2

− (1 − αn)
(
1 − μ

τn

τn+1

)
‖zn − yn‖2

− (1 − αn) βn (1 − λ − βn) ‖U zn − zn‖2 .

The desired result can be obtained by a simple deformation.
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Claim 3.

‖xn+1 − q‖2 ≤ (1 − (1 − ρ)αn) ‖xn − q‖2 + (1 − ρ)αn

[ 2

1 − ρ
〈 f (q) − q, xn+1 − q〉

+ 3Mθn

(1 − ρ)αn
‖xn − xn−1‖

]
, ∀n ≥ n0 .

Indeed, by the definition of wn , one obtains

‖wn − q‖2 = ‖xn + θn (xn − xn−1) − q‖2
= ‖xn − q‖2 + 2θn 〈xn − q, xn − xn−1〉 + θ2n ‖xn − xn−1‖2
≤ ‖xn − q‖2 + 3Mθn ‖xn − xn−1‖ ,

(3.10)

where M := supn∈N {‖xn − q‖ , θ ‖xn − xn−1‖} > 0. Using (3.8) and (3.10), we get

‖xn+1 − q‖2 = ‖αn f (xn) + (1 − αn) tn − q‖2
= ‖αn ( f (xn) − f (q)) + (1 − αn) (tn − q) + αn( f (q) − q)‖2
≤ ‖αn ( f (xn) − f (q)) + (1 − αn) (tn − q)‖2 + 2αn 〈 f (q) − q, xn+1 − q〉
≤ αn ‖ f (xn) − f (q)‖2 + (1 − αn) ‖tn − q‖2 + 2αn 〈 f (q) − q, xn+1 − q〉
≤ αnρ ‖xn −q‖2+(1−αn) ‖xn − q‖2 + 2αn〈 f (q) − q, xn+1 − q〉 + 3Mθn ‖xn − xn−1‖
= (1 − (1 − ρ)αn) ‖xn − q‖2 + (1 − ρ)αn

[ 2

1 − ρ
〈 f (q) − q, xn+1 − q〉

+ 3Mθn

(1 − ρ)αn
‖xn − xn−1‖

]
, ∀n ≥ n0 .

(3.11)

Claim 4. The sequence {‖xn − q‖2} converges to zero. Indeed, from Lemma 2.2 and
Remark 3.1, it suffices to show that lim supk→∞〈 f (q) − q, xnk+1 − q〉 ≤ 0 for every
subsequence {‖xnk − q‖} of {‖xn − q‖} satisfying

lim inf
k→∞

(‖xnk+1 − q‖ − ‖xnk − q‖) ≥ 0 . (3.12)

For this purpose, we assume that {‖xnk − q‖} is a subsequence of {‖xn − q‖} such
that (3.12) holds. Then

lim inf
k→∞

(
‖xnk+1 − q‖2 − ‖xnk − q‖2

)
= lim inf

k→∞
[(‖xnk+1 − q‖ − ‖xnk − q‖) (‖xnk+1 − q‖ + ‖xnk − q‖)] ≥ 0 .

123



Viscosity-type inertial extragradient algorithms for solving VIs and FPPs 1399

It follows from Claim 2 and Condition (C5) that

lim sup
k→∞

{
(1 − αnk )

(
1 − μ

τnk

τnk+1

) ∥∥ynk − wnk

∥∥2
+ (1 − αnk )

(
1 − μ

τnk

τnk+1

) ∥∥znk − ynk

∥∥2
+ (1 − αnk )βnk

(
1 − λ − βnk

) ∥∥U znk − znk

∥∥2 }
≤ lim sup

k→∞

[∥∥xnk − q
∥∥2 − ‖xnk+1 − q‖2 + αnk

∥∥ f
(
xnk

) − q
∥∥2 + αnk M2

]
= − lim inf

k→∞

[
‖xnk+1 − q‖2 − ∥∥xnk − q

∥∥2] ≤ 0 ,

which implies that

lim
k→∞

∥∥wnk − ynk

∥∥ = 0, and lim
k→∞

∥∥znk − U znk

∥∥ = 0, and lim
k→∞

∥∥znk − ynk

∥∥ = 0 .

(3.13)

Therefore, we get limk→∞
∥∥znk − wnk

∥∥ = 0. According to the definition of wn , one
has

∥∥xnk − wnk

∥∥ = θnk

∥∥xnk − xnk−1
∥∥ = αnk · θnk

αnk

∥∥xnk − xnk−1
∥∥ → 0, as k → ∞ .

(3.14)

This together with limk→∞
∥∥znk − wnk

∥∥ = 0 yields that

lim
k→∞

∥∥znk − xnk

∥∥ = 0 . (3.15)

From tnk = (
1 − βnk

)
znk + βnk U znk , one sees that

∥∥tnk − znk

∥∥ = βnk

∥∥U znk − znk

∥∥ ≤ (1 − λ)
∥∥U znk − znk

∥∥ .

In view of (3.13), we get

lim
k→∞

∥∥tnk − znk

∥∥ = 0 . (3.16)

From (3.15) and (3.16), we deduce that

∥∥xnk+1 − xnk

∥∥ = ∥∥αnk f
(
xnk

) + (
1 − αnk

)
tnk − xnk

∥∥
≤ αnk

∥∥ f
(
xnk

) − xnk

∥∥ + (
1 − αnk

) ∥∥tnk − xnk

∥∥
≤ αnk

∥∥ f
(
xnk

) − xnk

∥∥ + ∥∥tnk − znk

∥∥ + ∥∥znk − xnk

∥∥ → 0, as k → ∞ .

(3.17)
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Since the sequence
{

xnk

}
is bounded, one infers that there exists a subsequence {xnk j

}
of

{
xnk

}
such that xnk j

⇀z, which further yields that

lim sup
k→∞

〈
f (q) − q, xnk − q

〉 = lim
j→∞〈 f (q) − q, xnk j

− q〉 = 〈 f (q) − q, z − q〉 .

(3.18)

From (3.14), one gets wnk ⇀z. Combining (3.13), limn→∞ τn = τ and Lemma 2.1,
one concludes that z ∈ VI(C, A). It follows from (3.15) that znk ⇀z. By the demi-
closedness of (I − U ), we get that z ∈ Fix(U ). Thus, z ∈ Fix(U ) ∩ VI(C, A).
Combining (3.18), the definition of q and z ∈ Fix(U ) ∩ VI(C, A), we obtain

lim sup
k→∞

〈
f (q) − q, xnk − q

〉 = 〈 f (q) − q, z − q〉 ≤ 0 , (3.19)

which, together with (3.17) and (3.19), yields that

lim sup
k→∞

〈
f (q) − q, xnk+1 − q

〉
≤ lim sup

k→∞
〈
f (q) − q, xnk+1 − xnk

〉 + lim sup
k→∞

〈 f (q) − q, xnk − q〉
= 〈 f (q) − q, z − q〉 ≤ 0 .

(3.20)

Combining Claim 3, (3.20) and Remark 3.1, in the light of Lemma 2.2, we observe
that xn → q as n → ∞. The proof of Theorem 3.1 is completed. ��

In particular, considering when U = I in Algorithm 3.1, where I is the identity
operator, we can obtain a new algorithm to solve the variational inequality problem
(VI). More precisely, we have the following Corollary 3.1.

Corollary 3.1 Assume that mapping A : H → H is Lipschitz continuous and mono-
tone, and mapping f : H → H is ρ-contraction with constant ρ ∈ [0, 1). Let
{εn} be a positive sequence such that limn→∞ εn

αn
= 0, where {αn} ⊂ (0, 1) satisfies

limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Assume that the solution set of the variational
inequality problem is non-empty. Let x0, x1 ∈ H and the sequence {xn} be generated
by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wn = xn + θn (xn − xn−1) ,

yn = PC (wn − τn Awn) ,

zn = PTn (wn − τn Ayn) ,

Tn = {x ∈ H | 〈wn − τn Awn − yn, x − yn〉 ≤ 0} ,

xn+1 = αn f (xn) + (1 − αn) zn ,

(3.21)

where θn and τn are defined in (3.1) and (3.2), respectively. Then the iterative
sequence {xn} generated by (3.21) converges to q ∈ VI(C, A) in norm, where
q = PVI(C,A)( f (q)).
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3.2 The viscosity-type inertial Tseng’s extragradient algorithm

In this subsection, we introduce a viscosity-type inertial Tseng’s extragradient algo-
rithm for solving variational inequality problems and fixed point problems. Our
Algorithm 3.2 is as follows.

Algorithm 3.2 The viscosity-type inertial Tseng’s extragradient algorithm
Initialization: Take θ > 0, τ1 > 0, μ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set wn = xn + θn

(
xn − xn−1

)
, where θn is defined in

(3.1).
Step 2. Compute yn = PC (wn − τn Awn).
Step 3. Compute zn = yn − τn (Ayn − Awn).
Step 4. Compute xn+1 = αn f (xn) + (1 − αn) [(1 − βn) zn + βnU zn ], and update τn+1 by (3.2).
Set n := n + 1 and go to Step 1.

The following lemma is very helpful for analyzing the convergence of the Algo-
rithm 3.2.

Lemma 3.3 ( [35]) Assume that Condition (C2) holds. Let {zn} be a sequence gener-
ated by Algorithm 3.2. Then

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 , ∀p ∈ VI(C, A) ,

and

‖zn − yn‖ ≤ μ
τn

τn+1
‖wn − yn‖ .

Theorem 3.2 Assume that Conditions (C1)–(C5) hold. Then the sequence {xn} gen-
erated by Algorithm 3.2 converges to q ∈ Fix(U ) ∩ VI(C, A) in norm, where
q = PFix(U )∩VI(C,A)( f (q)).

Proof We also divided the proof into four steps.
Claim 1. The sequence {xn} is bounded. Take tn = (1 − βn) zn + βnU zn . Combining
Lemma 2.3 (ii) and Lemma 3.3, we obtain

‖tn − q‖2 ≤‖zn − q‖2 − βn (1 − λ − βn) ‖U zn − zn‖2

≤ ‖wn − q‖2 −
(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 − βn (1 − λ − βn) ‖U zn − zn‖2 .

(3.22)

By Lemma 3.1, there exists n1 ∈ N such that 1− μ2 τ 2n
τ 2n+1

> 0,∀n ≥ n1. From (3.22),

we have

‖tn − q‖ ≤ ‖wn − q‖ , ∀n ≥ n1 . (3.23)
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Using the same arguments with the Claim 1 in the Theorem 3.1, we get that the
sequence {xn} is bounded. Consequently, the sequences {wn}, { f (xn)}, {yn} and {zn}
are also bounded.
Claim 2.

(1 − αn)
(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 + (1 − αn) βn (1 − λ − βn) ‖U zn − zn‖2

≤ ‖xn − q‖2 − ‖xn+1 − q‖2 + αn ‖ f (xn) − q‖2 + αn M2 .

Indeed, using (3.9), (3.22) and (3.23), we have

‖xn+1 − q‖2 ≤ αn ‖ f (xn) − q‖2 + (1 − αn) ‖tn − q‖2
≤ αn ‖ f (xn) − q‖2 + ‖xn − q‖2 + αn M2

− (1 − αn)
(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2

− (1 − αn) βn (1 − λ − βn) ‖U zn − zn‖2 ,

where M2 is defined in Claim 2 of Theorem 3.1.
Claim 3.

‖xn+1 − q‖2 ≤ (1 − (1 − ρ)αn) ‖xn − q‖2

+ (1 − ρ)αn

[ 2

1 − ρ
〈 f (q) − q, xn+1 − q〉

+ 3Mθn

(1 − ρ)αn
‖xn − xn−1‖

]
, ∀n ≥ n1 .

The desired result can be obtained by using the same arguments as in the Claim 3 of
Theorem 3.1.
Claim 4.The sequence {‖xn − q‖} converges to zero. The proof is similar to the Claim
4 of Theorem 3.1. So we omit it here. ��

As stated in Corollary 3.1, we have the following result by setting U = I in
Algorithm 3.2.

Corollary 3.2 Let A, f , αn and εn be the same as in Corollary 3.1. Let x0, x1 ∈ H
and the sequence {xn} be created by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wn = xn + θn (xn − xn−1) ,

yn = PC (wn − τn Awn) ,

zn = yn − τn (Ayn − Awn) ,

xn+1 = αn f (xn) + (1 − αn) zn ,

(3.24)

where θn and τn are defined in (3.1) and (3.2), respectively. Then the iterative sequence
{xn} formed by (3.24) converges to q ∈ VI(C, A) in norm, where q = PVI(C,A)( f (q)).
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4 Numerical examples

In this section, we provide some numerical examples to illustrate the numerical behav-
ior of the proposed algorithms (Algorithm 3.1 (shortly, iVSEGM) and Algorithm 3.2
(shortly, iVTEGM)) and also to compare themwith some existing strongly convergent
algorithms, which including the Halpern subgradient extragradient method (HSEGM)
[21], the modified subgradient extragradient algorithm (MSEGM) [22, Algorithm 1],
the viscosity-type subgradient extragradient method (VSEGM) [23] and the viscosity-
type Tseng’s extragradient method (VTEGM) [23]. All the programs are performed in
MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz computer with
RAM 8.00 GB.

The parameters of all algorithms are set as follows. In all algorithms, we set αn =
1/(n + 1) and βn = n/(2n + 1). For the proposed algorithms and the algorithms
(VSEGM) and (VTEGM), we choose τ1 = 1, μ = 0.5 and f (x) = 0.5x . Take
θ = 0.3, εn = 100/(n+1)2 in our proposed algorithms. For the algorithms (HSEGM)
and (MSEGM), we choose the step size as τn = 0.99/L . In our experiment examples,
the maximum number of iterations 200 as a common stopping criterion. The solution
x∗ of the problems are known, so we use Dn = ‖xn −x∗‖ to measure the n-th iteration
error. The convergence of {Dn} to 0 implies that {xn} converges to the solution of the
problem.

4.1 Theoretical examples

Example 4.1 Consider a nonlinear operator A : R2 → R
2 defined by

A(x, y) = (x + y + sin x;−x + y + sin y)

and the feasible set C is a box defined by C = [−1, 1] × [−1, 1]. It is easy to check
that A is monotone and Lipschitz continuous with the constant L = 3. Let E be a
2 × 2 matrix defined by

E =
(
1 0
0 2

)
.

We consider the mapping U : R2 → R
2 by U z = ‖E‖−1Ez, where z = (x, y)T. It is

obvious to see thatU is 0-demicontractive and thus λ = 0. The solution of the problem
is x∗ = (0, 0)T. The initial values x0 = x1 are randomly generated by k*rand(2,1) in
MATLAB. The numerical results of all the algorithms with four different initial values
are described in Fig. 1.

Example 4.2 Consider the linear operator A : Rm → R
m (m = 50, 100, 150, 200)

in the form A(x) = Mx + q, where q ∈ R
m and M = N N T + Q + D, N is a

m × m matrix, Q is a m × m skew-symmetric matrix, and D is a m × m diagonal
matrix with its diagonal entries being nonnegative (hence M is positive symmetric
definite). The feasible set C is given by C = {x ∈ R

m : −2 ≤ xi ≤ 5, i = 1, . . . , m}.
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(a) (b)

(c) (d)

Fig. 1 Numerical results of all algorithms for Example 4.1

It is clear that A is monotone and Lipschitz continuous with constant L = ‖M‖. In
this experiment, all entries of N , D are generated randomly in [0, 2], Q is generated
randomly in [−2, 2] and q = 0. Let U : H → H be given by U x := 0.5x . It is
easy to see that the solution of the problem in this case is x∗ = {0}. The initial values
x0 = x1 are randomly generated by 10rand(2,1) in MATLAB. Figure 2 shows the
numerical behavior of all the algorithms in different dimensions.

Example 4.3 Finally, we consider our problem in the infinite-dimensional Hilbert
space H = L2([0, 1]) with inner product 〈x, y〉 := ∫ 1

0 x(t)y(t)dt and norm

‖x‖ := (
∫ 1
0 |x(t)|2dt)1/2,∀x, y ∈ H . Let the feasible set be the unit ball C :=

{x ∈ H : ‖x‖ ≤ 1}. Define an operator A : C → H by

(Ax)(t) =
∫ 1

0
(x(t) − G(t, s)g(x(s))) ds + h(t), t ∈ [0, 1], x ∈ C,

where

G(t, s) = 2tset+s

e
√
e2 − 1

, g(x) = cos x , h(t) = 2tet

e
√
e2 − 1

.
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(a) (b)

(c) (d)

Fig. 2 Numerical results of all algorithms for Example 4.2

It is known that A is monotone and L-Lipschitz continuous with L = 2 (see [36]).
The projection on C is inherently explicit, that is,

PC (x) =
{ x

‖x‖ , if ‖x‖ > 1 ;
x, if ‖x‖ ≤ 1 .

The mapping U : L2([0, 1]) → L2([0, 1]) is of form

(U x)(t) =
∫ 1

0
t x(s) ds, t ∈ [0, 1] .

A straightforward computation implies that U is 0-demicontractive. The solution
of the problem is x∗(t) = 0. The maximum number of iterations 50 is used as
a common stopping criterion for all algorithms. Figure 3 shows the behaviors of
Dn = ‖xn(t) − x∗(t)‖ generated by all the algorithms with four starting points.

Remark 4.1 We have the following observations for Examples 4.1–4.3.

(1) From Example 4.1 and Example 4.2, we see that our proposed iterative schemes
outperformance the existing algorithms [21–23] in terms of the elapsed time and
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(a) (b)

(c) (d)

Fig. 3 Numerical results of all algorithms for Example 4.3

accuracy. Since Example 4.3 occurs in an infinite-dimensional Hilbert space, it
can be seen from Fig. 3 that the proposed algorithms have a higher accuracy and
longer execution time. The increase in execution time is due to the fact that our
algorithms need to calculate the value of the inertial parameter in each iteration.

(2) It is worth noting that our algorithms are robust and converge very quickly. How-
ever, there are still some oscillations because the inertial selection is too large.

(3) The maximum number of iterations we choose is only 200. It is noted that the
iteration error of the Algorithm (HSEGM) is very big. In actual applications, it
may require more iterations to meet the accuracy requirements.

4.2 Applications to optimal control problems

We use the proposed Algorithms (3.21) and (3.24) to solve variational inequalities
that appears in optimal control problems. Assume that L2 ([0, T ],Rm) represents the
square-integrable Hilbert space with inner product 〈p, q〉 = ∫ T

0 〈p(t), q(t)〉 dt and
norm ‖p‖ = √〈p, p〉. The optimal control problem is described as follows:

p∗(t) ∈ Argmin{g(p) | p ∈ V }, t ∈ [0, T ] , (3.1)
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where V represents a set of feasible controls composed of m piecewise continuous
functions. Its form is expressed as follows:

V = {
p(t) ∈ L2

([0, T ],Rm) : pi (t) ∈ [
p−

i , p+
i

]
, i = 1, 2, . . . , m

}
. (3.2)

In particular, the control p(t) may be a piecewise constant function (bang-bang type).
The terminal objective function has the form

g(p) = �(x(T )) , (3.3)

where� is a convex and differentiable defined on the attainability set. Assume that the
trajectory x(t) ∈ L2([0, T ]) satisfies the constraints of the linear differential equation
system:

ẋ(t) = d

dt
x(t) = Q(t)x(t) + W (t)p(t), 0 ≤ t ≤ T , x(0) = x0 , (3.4)

where Q(t) ∈ R
n×n , W (t) ∈ R

n×m are given continuousmatrices for every t ∈ [0, T ].
By the solution of problem (3.1)–(3.4), we mean a control p∗(t) and a correspond-
ing (optimal) trajectory x∗(t) such that its terminal value x∗(T ) minimizes objective
function (3.3). It is known that the optimal control problem (3.1)–(3.4) can be trans-
formed into a variational inequality problem (see [37]). We first use the classical Euler
discretization method to decompose the optimal control problem (3.1)–(3.4) and then
apply the proposed algorithms to solve the variational inequality problem correspond-
ing to the discretized version of the problem (see [5,38,39] for more details).

Next, we present several mathematical examples to illustrate the computational
performance of the proposed algorithms. Our parameters are set as follows. We set
N = 100, αn = 10−4/(n + 1), θ = 0.01, εn = 10−4/(n + 1)2, τ1 = 0.4, μ = 0.1
and f (x) = 0.1x for the suggested Algorithms (3.21) and (3.24). The initial controls
p0(t) = p1(t) are randomly generated in [−1, 1]. The stopping criterion is either
Dn = ‖pn+1 − pn‖ ≤ 10−4, or the maximum number of iterations is performed
1000.

Example 4.4 (Control of a harmonic oscillator, see [40])

minimize x2(3π)

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π ] ,

x(0) = 0 ,

p(t) ∈ [−1, 1] .

The exact optimal control of Example 4.4 is known:

p∗(t) =
{

1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ;
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π ] .
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Algorithm (3.21) andAlgorithm (3.24) take 0.11806 seconds and 0.082014 seconds to
reach the allowable error, respectively. Fig. 4 shows the approximate optimal control
and the corresponding trajectories of the stated Algorithm (3.21).

We now consider an example in which the terminal function is not linear.

Example 4.5 (see [41])

minimize − x1(2) + (x2(2))
2 ,

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = p(t), ∀t ∈ [0, 2] ,

x1(0) = 0, x2(0) = 0 ,

p(t) ∈ [−1, 1] .

The exact optimal control of Example 4.5 is

p∗(t) =
{

1, if t ∈ [0, 1.2) ;
−1, if t ∈ (1.2, 2] .

Both Algorithm (3.21) and Algorithm (3.24) need to perform a maximum of 1000
iterations and they take 0.41784 and 0.34624 seconds, respectively. The approximate
optimal control and the corresponding trajectories of the suggested Algorithm (3.24)
are plotted in Fig. 5.

Remark 4.2 As can be seen from Example 4.4 and Example 4.5, the suggested algo-
rithms can be used to solve the optimal control problems described by the variational
inequality model, and they perform well when the terminal function is linear or non-
linear.
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(b) Optimal trajectories

Fig. 4 Numerical results of the proposed Algorithm (3.21) for Example 4.4

123



Viscosity-type inertial extragradient algorithms for solving VIs and FPPs 1409

0 0.5 1 1.2 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Initial and optimal controls

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Optimal trajectories

Fig. 5 Numerical results of the proposed Algorithm (3.24) for Example 4.5

5 Conclusions

In this paper, we introduced two new extragradient algorithms to solve variational
inequality problems and fixed point problems in real Hilbert spaces. The algorithms
are constructed around the inertial method, the viscosity method, the subgradient
extragradient method and the Tseng’s extragradient method. Strong convergence the-
orems of the proposed algorithms are established without the prior knowledge of the
Lipschitz constant of the operator. Some numerical experiments were conducted to
illustrate the performance of the proposed algorithms over previously known ones.
Our presented iterative schemes extended and improved some existing results in the
literature.
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