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Abstract. In this paper, we propose two inertial projection algorithms for finding a common solution of
monotone variational inclusions and hierarchical fixed point problems of nonexpansive mappings. We
obtain two strong convergence theorems under some suitable conditions in Hilbert spaces. In addition, we
also give numerical examples to compare our algorithms with the existing ones. Numerical results show
that our proposed algorithms are efficient and robust.
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1. INTRODUCTION

Let C be a nonempty convex closed set in a real Hilbert space H. The inner product and the
inducted norm are represented by 〈·, ·〉 and ‖ · ‖, respectively. Let I be the identity mapping
on C, and PC the metric projection of H onto set C. For any x ∈ H, there exists a unique nearest
point in C, denoted by PCx, such that ‖x−PCx‖ ≤ ‖x− y‖, ∀y ∈ C. PC is called the metric
projection of H onto C. One has ‖y−PCx‖2 +‖x−PCx‖2 ≤ ‖x− y‖2, ∀x ∈ H,y ∈C. To begin
with, let us recall the following concepts in convex and nonlinear analysis. For all x,y ∈C, a
mapping A : C→H is said to be (i) monotone if 〈Ax−Ay,x−y〉 ≥ 0; (ii) k-strongly monotone if
there exists a positive constant k such that 〈Ax−Ay,x− y〉 ≥ k‖x− y‖2; (iii) χ-inverse strongly
monotone if there exists a positive constant χ such that 〈Ax−Ay,x− y〉 ≥ χ‖Ax−Ay‖2; (iv)
L-Lipschitzian if there exists a positive constant L such that ‖Ax−Ay‖ ≤ L‖x− y‖. Let us also
recall that a mapping T : C→C is said to (i) nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖; (ii) firmly
nonexpansive if ‖T x−Ty‖2 ≤ 〈T x−Ty,x− y〉. Let G : H→ 2H be a set-valued operator on H.
G is said to be monotone if and only if 〈p−q,x− y〉 ≥ 0 for any x,y ∈ H, p ∈ Gx and q ∈ Gy.
Recall that a mutivalued operator is said to be maximal if and only if its graph is not contained
in the graph of any other monotone operator properly. Let A : H → H be a single-valued and
B : H → 2H be a multi-valued mappings. We consider the following monotone variational
inclusion problem (in short, MVIP):

find x∗ ∈ H such that 0 ∈ (A+B)x∗ . (1.1)
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Denote by Φ the solution set of MVIP (1.1). MVIP (1.1) includes some important applications
arising in different areas, such as machine learning, image processing, transportation, and linear
inverse problems, as special cases, see, for instance [1, 6, 18, 20, 21] and the references therein.
It is known that, for each x ∈ H, there exists a unique u ∈ H such that u ∈ (I +µB)−1x, where
µ > 0. The operator JB

µ := (I +µB)−1 defined on H is referred to as the resolvent of B, which is
a single-valued and firmly nonexpansive mapping.

On the other hand, hierarchical fixed point problem (in short, HFPP) is an important problem
which covers monotone variational inequality on fixed point sets, hierarchical minimization
problems, minimization problems over equilibrium constraints, etc, see, e.g., [10, 13, 14]. In
2006, Moudafi and Mainge [15] introduced the following HFPP for a nonexpansive mapping T
with respect to another nonexpansive mapping S on C, namely,

find x∗ ∈ Fix(T ) such that 〈(I−S)x∗,x∗− x〉 ≤ 0 , ∀x ∈ Fix(T ) , (1.2)

where Fix(T ) is the set of fixed points of T , i.e., Fix(T ) := {x ∈C : T x = x}. The solution set
of HFPP (1.2) is represented as Ψ :=

{
x∗ ∈C : x∗ =

(
PFix(T ) ◦S

)
x∗
}

. It is easy to check that
solving HFPP (1.2) is equivalent to solving the fixed-point problem:

find x∗ ∈C such that x∗ = PFix(T ) ◦Sx∗. (1.3)

Let NFix(T ) be the normal cone to Fix(T ), which is defined by

NFix(T ) =

{
{u ∈ H : 〈y− x,u〉 ≤ 0 , ∀y ∈ Fix(T )} , if x ∈ Fix(T ) ,
/0 , otherwise .

(1.4)

Then, HFPP (1.2) is equivalent to the variational inclusion problem:

find x∗ ∈C such that 0 ∈ NFix(T )x
∗+(I−S)x∗ . (1.5)

Some authors have studied the hierarchical fixed point problem of nonlinear mappings and other
related approximation problems, see, e.g., [5, 13, 14, 15, 19]. In 2007, Moudafi [14] introduced
the following Mann iteration algorithm for solving HFPP (1.2):

xn+1 = (1−ψn)xn +ψn (νnSxn +(1−νn)T xn) , ∀n≥ 0 , (1.6)

where {ψn} and {νn} are two sequences in (0,1). They proved the weak convergence of iterative
algorithm (1.6). Iterative algorithm (1.6) can derive a number of algorithms, including the
proximal methods and the gradient methods.

In 2015, Malitsky and Semenov [17] introduced a new hybrid method without extrapolation
step for solving variational inequality problems. They obtained a strong convergence theorem and
their numerical experiments show that their method has a competitive performance. Recently,
Kazmi et al. [10] proved a strong convergence theorem with the following hybrid iterative
method without extrapolating step for MVIP (1.1) and HFPP (1.2):

yn = (1−ψn)xn +ψn (νnSzn +(1−νn)T zn) ,

zn+1 = JB
µ (yn−µAyn) ,

Cn =
{

z ∈C : ‖zn+1− z‖2 ≤ (1−ψn)‖xn− z‖2 +ψn ‖zn− z‖2} ,
Qn = {z ∈C : 〈xn− z,xn− x0〉 ≤ 0} ,
xn+1 = PCn∩Qnx0 ,n≥ 0 .

(1.7)
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In recent years, inertial technology as an acceleration method has attracted extensive research.
Many authors have established different fast iterative algorithms using inertial technology. These
algorithms have shown advantages in theory and numerical experiments, and have been applied
to fields such as image processing and machine learning. For more discussion, we recommend
readers to refer to [1, 3, 6, 11, 12, 22] and the references therein.

In this paper, inspired and motivated by the above results, we introduce two inertial shrinking
projection algorithms for solving MVIP (1.1) and HFPP (1.2). Strong convergence theorems are
established in the framework of real Hilbert spaces. We also give some numerical examples to
illustrate the computational performance of our proposed algorithms. Our methods improve and
generalize some results presented by Mainge and Moudafi [13], Malitsky and Semenov [17],
Kazmi et al. [10], Dong and Lu [8], Yuying and Plubtieng [24], Dong et al. [7], Tan, Xu and
Li [23]. This paper is organized as follows. Section 2 gives the mathematical preliminaries.
Section 3 and Section 4 are devoted to the two algorithms. Section 5, the last section, numerically
compares the behaviors of the proposed algorithms and the existing ones.

2. PRELIMINARIES

Let {xn} be a sequence in a Hilbert space H. Let ωw {xn} denote the set of all weak limits
of {xn}. One denotes the strong and weak convergence of {xn} to a point x ∈ H by xn→ x and
xn ⇀ x, respectively. For each x,y,z ∈ H, we have the following facts.
(1) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉;
(2) ‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2, ∀t ∈ R;
(3) 〈x− y,z〉= 1

2

[
(x− y)2 + z2− (x− y− z)2].

The following lemmas play important roles in the proofs.

Lemma 2.1. [2] Let T : C→ H be a nonexpansive mapping on H. Then
(i) Fix(T ) is closed and convex;

(ii) T is demiclosed on H, that is, if xn ⇀ x and T xn− xn→ 0 as n→+∞, then x ∈ Fix(T ).

Lemma 2.2. [8] Let {an} and {ξn} be nonnegative real sequences. Assume that the following
inequality holds: an+1 ≤ αan+βξn, ∀n≥ 1, where α ∈ [0,1) and β > 0. If ∑

∞
n=1 ξn <+∞, then

limn→∞ an = 0.

Lemma 2.3. [16] Let C be a nonempty convex closed set in a real Hilbert space H. Let
{xn} ⊂ H, u ∈ H and q = PCu. If the weak ω−limit set ωw {xn} ⊂C and satisfies the condition
‖xn−u‖ ≤ ‖u−q‖, then {xn} converges strongly to q.

3. THE INERTIAL SHRINKING PROJECTION ALGORITHM WITHOUT EXTRAPOLATING STEP

Theorem 3.1. Let C be a nonempty convex closed subset of a real Hilbert space H. Let
S,T : C→ C be two nonexpansive mappings. Let A : C→ H be a χ-inverse strongly mono-
tone mapping and let B : H → 2H be a set-valued maximal monotone operator. Assume that
ϒ = Φ

⋂
Ψ
⋂

Fix(S) 6= /0 and the following conditions are satisfied:
(C1) {δn} ⊂ [δ1,δ2] ,δ1 ∈ (−∞,0],δ2 ∈ [0,∞);
(C2) {ψn} ⊆ (0,ψ],ψ ∈

(
0, 1

1+σ

)
,σ ∈ (0,1), limn→∞ infψn > 0;

(C3) {νn} ⊆ [ν1,ν2], ν1,ν2 ∈ (0,1);
(C4) µ ∈ (0,2χ).
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Set x−1,x0,z0 ∈C arbitrarily. Define two sequences {xn} and {zn} by the following algorithm:

wn = xn +δn(xn− xn−1) ,

yn = (1−ψn)wn +ψn (νnSzn +(1−νn)T zn) ,

zn+1 = JB
µ (yn−µAyn) ,

Cn+1 =
{

p ∈Cn : ‖zn+1− p‖2 ≤ (1−ψn)‖wn− p‖2 +ψn ‖zn− p‖2} ,
xn+1 = PCn+1x0 ,n≥ 0 .

(3.1)

Then the sequences {xn} and {zn} defined by (3.1) converge strongly to x∗ ∈ ϒ, where x∗ = Pϒx0.

Proof. Our proof is divided into four steps.
Step 1. We show that ϒ⊂Cn+1 for all n≥ 0. Since A : C→ H is a χ-inverse strongly monotone
mapping, we get that (I−µA) is nonexpansive. Hence JB

µ (I−µA) is also nonexpansive. Since
ϒ 6= /0, it follows from Lemma 2.1 (i) that Φ = Fix

(
JB

µ (I−µA)
)

is convex and closed. Hence
Fix
(
JB

µ (I− µA)
)
= (A+B)−1(0) is convex and closed. Since Ψ = Fix

(
PFix(T ) ◦S

)
6= /0, we

observe that Ψ is convex and closed. Therefore, ϒ is a nonempty convex and closed set. Hence
Pϒx0 is well defined. Further, we can easily observe that Cn+1 is convex and closed. Next, we
claim that ϒ⊂Cn+1,∀n≥ 0. Indeed, for any u ∈ ϒ, we have

‖yn−u‖2 =‖(1−ψn)wn +ψn (νnSzn +(1−νn)T zn)−u‖2

≤(1−ψn)‖wn−u‖2 +ψn
(
νn ‖Szn−u‖2 +(1−νn)‖T zn−u‖2

−νn (1−νn)‖Szn−T zn‖2 )
≤(1−ψn)‖wn−u‖2 +ψn

(
νn ‖zn−u‖2 +(1−νn)‖zn−u‖2

−νn (1−νn)‖Szn−T zn‖2 )
≤(1−ψn)‖wn−u‖2 +ψn ‖zn−u‖2−ψnνn (1−νn)‖Szn−T zn‖2

≤(1−ψn)‖wn−u‖2 +ψn ‖zn−u‖2 .

(3.2)

Since u ∈ ϒ, then u ∈ (A+B)−1(0) and hence JB
µ (I−µA)u = u. Therefore,

‖zn+1−u‖2 =
∥∥JB

µ (yn−µAyn)− JB
µ (u−µAu)

∥∥2

≤ ‖(yn−u)−µ (Ayn−Au)‖2

= ‖yn−u‖2 +µ
2 ‖Ayn−Au‖2−2µ〈yn−u,Ayn−Au〉

≤ ‖yn−u‖2 +µ
2 ‖Ayn−Au‖2−2µχ ‖Ayn−Au‖2

≤ ‖yn−u‖2 .

(3.3)

Combining (3.2) and (3.3), we see that

‖zn+1−u‖2 ≤ (1−ψn)‖wn−u‖2 +ψn ‖zn−u‖2 , (3.4)

which implies that u ∈Cn+1 and hence ϒ⊂Cn+1 for all n≥ 0.
Step 2. We show that {xn} converges weakly to x∗ ∈ (A+B)−1(0), x∗ ∈ Fix(T ) and x∗ ∈ Fix(S).
Since xn = PCnx0, this together with ϒ⊂Cn implies ‖xn− x0‖ ≤ ‖u− x0‖ , ∀u∈ ϒ, which implies
that {xn} is bounded. In particular,

‖xn− x0‖ ≤ ‖x∗− x0‖ , where x∗ = Pϒx0 . (3.5)
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Since xn = PCnx0 and xn+1 ∈Cn+1 ⊂Cn, we obtain

‖xn− xn+1‖2 ≤ ‖xn+1− x0‖2−‖xn− x0‖2 , ∀n≥ 0 . (3.6)

(3.5) and (3.6) lead us to

N

∑
n=1
‖xn+1− xn‖2 ≤

N

∑
n=1

(
‖xn+1− x0‖2−‖xn− x0‖2 )

= ‖xN+1− x0‖2−‖x1− x0‖2

≤ ‖x∗− x0‖2−‖x1− x0‖2 ,

which implies that ∑
∞
n=1 ‖xn+1− xn‖2 is convergent. Hence

lim
n→∞
‖xn+1− xn‖= 0 . (3.7)

Next, by the definition of {wn} in (3.1) and condition (C1), we have

‖wn− xn‖= δn ‖xn− xn−1‖ ≤max{|δ1| , |δ2|}‖xn− xn−1‖→ 0 . (3.8)

It follows from (3.7) and (3.8) that

‖wn− xn+1‖ ≤ ‖wn− xn‖+‖xn− xn+1‖→ 0 . (3.9)

On the other hand, by the definition of {wn} in (3.1), we also have

‖wn− xn+1‖2 =‖xn− xn+1 +δn (xn− xn−1)‖2

=‖xn− xn+1‖2 +δ
2
n ‖xn− xn−1‖2 +2δn 〈xn− xn+1,xn− xn−1〉

≤‖xn− xn+1‖2 +δ
2
n ‖xn− xn−1‖+δn

[
‖xn− xn+1‖2 +‖xn− xn−1‖2

]
≤(1+δn)‖xn− xn+1‖2 +δn (1+δn)‖xn− xn−1‖2 .

(3.10)

From (3.10), using xn+1 ∈Cn+1 and condition (C2), we obtain

‖zn+1− xn+1‖2 ≤(1−ψn)‖wn− xn+1‖2 +ψn ‖zn− xn+1‖2

≤(1−ψn)
[
(1+δn)‖xn− xn+1‖2 +δn (1+δn)‖xn− xn−1‖2 ]

+ψn
[
‖zn− xn‖2 +‖xn− xn+1‖2 +2〈zn− xn,xn− xn+1〉

]
≤(1−ψn)

[
(1+δn)‖xn− xn+1‖2 +δn (1+δn)‖xn− xn−1‖2 ]

+ψn
[
(1+σ

2)‖zn− xn‖2 +
(
1+

1
σ2

)
‖xn− xn+1‖2 ]

≤ϕ
∗ ‖zn− xn‖2 +

(
δ2 +

1+2σ2

σ2

)
‖xn− xn+1‖2 +δ2(1+δ2)‖xn− xn−1‖2

≤ϕ
∗ ‖zn− xn‖2 +ξn ,

(3.11)
where ϕ∗ = ψn(1+σ)< 1 and

ξn =
(
δ2 +

1+2σ2

σ2

)
‖xn− xn+1‖2 +δ2(1+δ2)‖xn− xn−1‖2 .
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From ∑
∞
n=1 ‖xn+1− xn‖2 <+∞, one has ∑

∞
n=1 ξn < ∞. Using Lemma 2.2 in (3.11) yields that

lim
n→∞
‖zn− xn‖= 0 . (3.12)

Since {xn} is bounded, one finds that (3.12), (3.9), and (3.2) imply that {zn}, {wn} and {yn} are
also bounded, respectively. From (3.7) and (3.12), one obtains that

‖zn+1− xn‖ ≤ ‖zn+1− xn+1‖+‖xn+1− xn‖→ 0 . (3.13)

Combining (3.8) and (3.12), one has

‖zn−wn‖ ≤ ‖zn− xn‖+‖xn−wn‖→ 0 . (3.14)

It follows from (3.8) and (3.13), one obtains that

‖zn+1−wn‖ ≤ ‖zn+1− xn‖+‖xn−wn‖→ 0 . (3.15)

Next, from (3.2) and (3.3), one sees that

‖zn+1−u‖2 ≤ ‖yn−u‖2−µ(2χ−µ)‖Ayn−Au‖2

≤ (1−ψn)‖wn−u‖2 +ψn ‖zn−u‖2−µ(2χ−µ)‖Ayn−Au‖2 ,

which implies

µ(2χ−µ)‖Ayn−Au‖2 ≤ ‖wn−u‖2−‖zn+1−u‖2 +ψn
(
‖zn−u‖2−‖wn−u‖2 )

≤ ‖wn− zn+1‖(‖wn−u‖+‖zn+1−u‖)
+ψn ‖zn−wn‖(‖zn−u‖+‖wn−u‖)
≤ L1 ‖wn− zn+1‖+ψnL2 ‖zn−wn‖ ,

(3.16)

where L1 := supn≥0 {‖wn−u‖+‖zn+1−u‖} ,L2 := supn≥0 {‖zn−u‖+‖wn−u‖}. In view of
µ(2χ−µ)> 0, (3.14), (3.15), (3.16) and condition (C2), one arrives at

lim
n→∞
‖Ayn−Au‖= 0 . (3.17)

Since JB
µ is firmly nonexpansive, one has

‖zn+1−u‖2 =
∥∥JB

µ (I−µA)yn− JB
µ (I−µA)u

∥∥2

≤〈zn+1−u,(I−µA)yn− (I−µA)u〉

=
1
2
[
‖(I−µA)yn− (I−µA)u‖2 +‖zn+1−u‖2−‖yn− zn+1−µ (Ayn−Au)‖2 ]

≤1
2
[
‖yn−u‖2 +‖zn+1−u‖2−‖yn− zn+1‖2 +2µ‖yn− zn+1‖‖Ayn−Au‖

]
,

(3.18)
which in turn yields

‖zn+1−u‖2 ≤ ‖yn−u‖2−‖yn− zn+1‖2 +2µ ‖yn− zn+1‖‖Ayn−Au‖ . (3.19)

Combining (3.2), (3.16) and (3.19), we can show that

‖yn− zn+1‖2 ≤(1−ψn)‖wn−u‖2 +ψn ‖zn−u‖2−‖zn+1−u‖2

+2µ ‖yn− zn+1‖‖Ayn−Au‖
≤L1 ‖wn− zn+1‖+ψnL2 ‖zn−wn‖+2µL3‖‖Ayn−Au‖ ,

(3.20)
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where L3 := supn {‖yn− zn+1‖}. Using (3.14), (3.15), (3.17), (3.20) and condition (C2), one has

lim
n→∞
‖yn− zn+1‖= 0 . (3.21)

It follows from (3.15) and (3.21) that

‖yn−wn‖ ≤ ‖yn− zn+1‖+‖zn+1−wn‖→ 0 . (3.22)

Combining (3.14) and (3.22), we see that

lim
n→∞
‖wn− yn−ψn (wn− zn)‖= 0 . (3.23)

From (3.2) and (3.3), we have

ψnνn (1−νn)‖Szn−T zn‖2 ≤‖wn−u‖2−‖zn+1−u‖2 +ψn
(
‖zn−u‖2−‖wn−u‖2 )

≤L1 ‖wn− zn+1‖+ψnL2 ‖zn−wn‖ .
Using (3.14), (3.15), conditions (C2) and (C3), we obtain

lim
n→∞
‖Szn−T zn‖= 0 . (3.24)

Further, from (3.1), it follows that

‖T zn− zn‖ ≤
1

ψn
‖yn−wn‖+‖wn− zn‖+νn ‖T zn−Szn‖ . (3.25)

Combining (3.14), (3.22), (3.24), (3.25), conditions (C2) and (C3), we obtain

lim
n→∞
‖zn−T zn‖= 0 . (3.26)

By means of (3.24) and (3.26), we have

lim
n→∞
‖Szn− zn‖= 0 . (3.27)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ x∗. Further,
it follows from (3.8), (3.12), (3.22) that the sequences {xn}, {wn}, {yn} and {zn} all have the
same asymptotic behavior. Therefore, combining (3.21), (3.26) and (3.27), we obtain from
Lemma 2.1 (ii) that x∗ ∈ (A+B)−1(0), x∗ ∈ Fix(T ) and x∗ ∈ Fix(S).
Step 3. We show that x∗ ∈ ϒ. From (3.1), we have

yn−wn = ψn (zn−wn)+ψn (νn (Szn− zn)+(1−νn)(T zn− zn)) ,

therefore,
1

ψnνn
(wn− yn−ψn (wn− zn)) = (I−S)zn +

(1−νn

νn

)
(I−T )zn . (3.28)

Thus, using monotonicity of I−S, it follows that〈 1
ψnνn

(wn− yn−ψn (wn− zn)) ,zn− p
〉

=〈(I−S)zn− (I−S)p,zn− p〉+ 〈(I−S)p,zn− p〉+ 1−νn

νn
〈zn−T zn,zn− p〉

≥〈(I−S)p,zn− p〉+ 1−νn

νn
〈zn−T zn ,zn− p〉 , ∀p ∈ Fix(T ) .

(3.29)

Using (3.23), (3.26), conditions (C2) and (C3) in (3.29), we obtain

limsup
n→∞

〈p−Sp,zn− p〉 ≤ 0 , ∀p ∈ Fix(T ) . (3.30)
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Since zn ⇀ x∗, it follows from (3.30) that

〈(I−S)p,x∗− p〉 ≤ 0 , ∀p ∈ Fix(T ) . (3.31)

According to Fix(T ) is convex, one has τ p+(1− τ)x∗ ∈ Fix(T ) for τ ∈ (0,1). Thus

〈(I−S)(τ p+(1− τ)x∗) ,x∗− (τ p+(1− τ)x∗)〉
= τ 〈(I−S)(τ p+(1− τ)x∗) ,x∗− p〉
≤ 0 , ∀p ∈ Fix(T ) ,

(3.32)

which implies 〈(I−S)(τ p+(1− τ)x∗) ,x∗− p〉 ≤ 0, ∀p ∈ Fix(T ). On taking limits τ→ 0+, we
have 〈(I−S)x∗,x∗− p〉 ≤ 0, ∀p ∈ Fix(T ). That is x∗ ∈Ψ and thus x∗ ∈ ϒ.
Step 4. Finally, we show that xn→ x∗, where x∗ = Pϒx0. Since ωw {xn} ⊂ ϒ, we see that (3.5)
and Lemma 2.3 ensure the strong convergence of {xn} to x∗, where x∗ = Pϒx0. �

Remark 3.1. (i) If we modify the definitions of {yn} and Cn+1 in the iterative Algorithm (3.1),
just like the reference [10] did, we can get a new algorithm different from Algorithm (3.1).

(ii) If we set B = ∂ IC and A = 0, then we obtain a new inertial shrinking projection algorithm
without extrapolating step for solving HFPP (1.2), which was proposed by Tan et al. [23].

4. THE INERTIAL SHRINKING PROJECTION ALGORITHM

Theorem 4.1. Let C be a nonempty convex and closed set in a real Hilbert space H. Let
S,T : C→ C be two nonexpansive mappings. Let A : C→ H be a χ-inverse strongly mono-
tone mapping and let B : H → 2H be a set-valued maximal monotone operator. Assume that
ϒ = Φ

⋂
Ψ
⋂

Fix(S) 6= /0 and the following conditions are satisfied:

(D1) {δn} ⊂ [δ1,δ2] ,δ1 ∈ (−∞,0],δ2 ∈ [0,∞);
(D2) {ψn} ⊆ (0,ψ],ψ ∈

(
0, 1

1+σ

)
,σ ∈ (0,1), limn→∞ infψn > 0;

(D3) {νn} ⊆ [ν1,ν2], ν1,ν2 ∈ (0,1);
(D4) µ ∈ (0,2χ).

Set x−1,x0 ∈C arbitrarily. Define two sequences {xn} and {zn} by the following algorithm:

wn = xn +δn(xn− xn−1) ,

yn = (1−ψn)wn +ψn (νnSwn +(1−νn)Twn) ,

zn = JB
µ (yn−µAyn) ,

Cn+1 =
{

z ∈Cn : ‖zn− z‖2 ≤ ‖wn− z‖2} ,
xn+1 = PCn+1x0 ,n≥ 0 .

(4.1)

Then the sequences {xn} and {zn} defined by (4.1) converge strongly to x∗ ∈ ϒ, where x∗ = Pϒx0.

Proof. Our proof is divided into four steps.
Step 1. According to the Step 1 in Theorem 3.1, we see that ϒ is a nonempty convex and closed
set. Hence Pϒx0 is well defined. Observe that Cn+1 is convex and closed. Next, we claim
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that ϒ⊂Cn+1,∀n≥ 0. Indeed, for any u ∈ ϒ, we have

‖yn−u‖2 =‖(1−ψn)wn +ψn (νnSwn +(1−νn)Twn)−u‖2

=‖(1−ψn)(wn−u)+ψn (νn (Swn−u)+(1−νn)(Twn−u))‖2

≤(1−ψn)‖wn−u‖2 +ψn
(
νn ‖Swn−u‖2

+(1−νn)‖Twn−u‖2−νn (1−νn)‖Swn−Twn‖2 )
≤‖wn−u‖2−ψnνn (1−νn)‖Swn−Twn‖2 .

(4.2)

On the other hand, one has

‖zn−u‖2 ≤ ‖yn−u‖2−µ(2χ−µ)‖Ayn−Au‖2 ≤ ‖yn−u‖2 . (4.3)

Combining (4.2) and (4.3), one has ‖zn−u‖2 ≤ ‖wn−u‖2. This implies that u ∈Cn+1 and hence
ϒ⊂Cn+1 for all n≥ 0.
Step 2. We show that {xn} converges weakly to x∗ ∈ (A+B)−1(0), x∗ ∈ Fix(T ) and x∗ ∈ Fix(S).
Using the same arguments as the Step 2 in Theorem 3.1, we can obtain that the sequence {xn} is
bounded. Further, we can also prove that

∞

∑
n=1
‖xn+1− xn‖2 <+∞ , and lim

n→∞
‖xn+1− xn‖= 0 , (4.4)

and
lim
n→∞
‖wn− xn‖= 0 , and lim

n→∞
‖wn− xn+1‖= 0 . (4.5)

In view of the xn+1 ∈Cn+1, we obtain

‖zn− xn+1‖2 ≤ ‖wn− xn+1‖2 . (4.6)

It follows from (4.5) and (4.6) that

lim
n→∞
‖zn− xn+1‖= 0 . (4.7)

Furthermore, combining (4.4) and (4.7), we see that

‖zn− xn‖ ≤ ‖zn− xn+1‖+‖xn+1− xn‖→ 0 . (4.8)

Using (4.5) and (4.8), one has

‖zn−wn‖ ≤ ‖zn− xn‖+‖xn−wn‖→ 0 . (4.9)

From (4.2), (4.3), (4.9), conditions (D2) and (D3), we have

ψnνn (1−νn)‖Swn−Twn‖2 ≤ ‖wn−u‖2−‖yn−u‖2 ≤ ‖wn−u‖2−‖zn−u‖2

≤ ‖wn− zn‖(‖wn−u‖+‖zn−u‖) = M ‖wn− zn‖ ,
where M := supn≥0 {‖wn−u‖+‖zn−u‖}. From (4.9), one has

lim
n→∞
‖Swn−Twn‖= 0 . (4.10)

According to (4.3), we have

µ(2χ−µ)‖Ayn−Au‖2 ≤ ‖wn−u‖2−‖zn−u‖2 ≤M ‖wn− zn‖ . (4.11)

Since µ(2χ−µ)> 0, one concludes from (4.9) that

lim
n→∞
‖Ayn−Au‖= 0 . (4.12)
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As the same in (3.18), we can show that

‖zn−u‖2 ≤ ‖yn−u‖2−‖yn− zn‖2 +2µ ‖yn− zn‖‖Ayn−Au‖ , (4.13)

which together with (4.2) gives that

‖yn− zn‖2 ≤‖wn−u‖2−‖zn−u‖2 +2µ ‖yn− zn‖‖Ayn−Au‖
≤M ‖wn− zn‖+2µM1‖‖Ayn−Au‖ ,

(4.14)

where M1 := supn≥0 {‖yn− zn‖}. Thus, it follows from (4.9) and (4.12) that

lim
n→∞
‖yn− zn‖= 0 . (4.15)

Combining (4.9) and (4.15), we obtain

‖yn−wn‖ ≤ ‖yn− zn‖+‖zn−wn‖→ 0 . (4.16)

Further, from (4.1), we have

‖Twn−wn‖ ≤
1

ψn
‖yn−wn‖+νn ‖Twn−Swn‖ .

Hence, it follows from (4.10) and (4.16) that

lim
n→∞
‖Twn−wn‖= 0 . (4.17)

Combining (4.10) and (4.17), we see that

lim
n→∞
‖Swn−wn‖= 0 . (4.18)

Since
‖T xn− xn‖ ≤ ‖T xn−Twn‖+‖Twn−wn‖+‖wn− xn‖

≤ 2‖wn− xn‖+‖Twn−wn‖ ,
we obtain from (4.5) and (4.17) that

lim
n→∞
‖T xn− xn‖= 0 . (4.19)

Thus, it follows from (4.19) and Lemma 2.1 (ii) that every weak limit point of {xn} is a fixed
point of mapping T , i.e., ωw {xn} ⊂ Fix(T ). Therefore, {xn} converges weakly to x∗ ∈ Fix(T ).
Further, from (4.5), (4.15), (4.16), (4.17), (4.18), we obtain that x∗ ∈ (A+B)−1(0), x∗ ∈ Fix(T )
and x∗ ∈ Fix(S).
Step 3. We show that x∗ ∈ ϒ. From (4.1), we have

yn−wn = ψn (νn (Swn−wn)+(1−νn)(Twn−wn)) ,

and hence
1

ψnνn
(wn− yn) = (I−S)wn +

(1−νn

νn

)
(I−T )wn .

Therefore, using monotonicity of I−S, we obtain〈wn− yn

ψnνn
,wn− p

〉
=〈(I−S)wn− (I−S)p,wn− p〉+ 〈(I−S)p,wn− p〉

+
1−νn

νn
〈wn−Twn,wn− p〉

≥〈(I−S)p,wn− p〉+ 1−νn

νn
〈wn−Twn,wn− p〉 , ∀p ∈ Fix(T ) .

(4.20)



TWO INERTIAL PROJECTION ALGORITHMS 181

Using (4.16), (4.17), and (4.20), we have

limsup
n→∞

〈p−Sp,wn− p〉 ≤ 0 , ∀p ∈ Fix(T ) .

By using the fact that {wn} weakly converges to x∗, we have 〈(I−S)p,x∗− p〉 ≤ 0, ∀p∈ Fix(T ).
As the same in (3.32), we find that

〈(I−S)x∗,x∗− p〉 ≤ 0, ∀p ∈ Fix(T ) . (4.21)

That is, x∗ ∈Ψ. Thus x∗ ∈ ϒ.
Step 4. Finally, as the Step 4 in Theorem 3.1, we can easily conclude that xn → x∗, where
x∗ = Pϒx0. This completes the proof. �

5. NUMERICAL EXPERIMENTS

In this section, we use some numerical experiments to illustrate the computational performance
of our proposed Algorithm (3.1) and Algorithm (4.1) by comparing them with the Algorithm (1.7)
in [10]. It should be pointed out that we use the FOM Solver [4] and the function fmincon in
MATLAB Optimization Toolbox to effectively calculate the projections onto Cn∩Qn and Cn+1.
All the programs are performed in MATLAB2018a on a PC Desktop Intel(R) Core(TM) i5-8250U
CPU @ 1.60GHz 1.800 GHz, RAM 8.00 GB.

Example 5.1. As an example, we seek common solutions for variational inequality problems
and nonlinear optimization problems. Let C be a nonempty convex and closed subset of a real
Hilbert space H. We consider the variational inequality problem (in short, VIP):

find x∗ ∈C such that 〈 f (x∗) ,x− x∗〉 ≥ 0 , ∀x ∈C , (5.1)

where f : H→ H is a single-valued mapping. Denote by VI(C, f ) the solution of the variational
inequality problem. Set T := PC and S := I− γ f , where 0 < γ < 2/L (L is the Lipschitz constant
of mapping f ). We know that Fix(PC(I− γ f )) = VI(C, f ). Therefore, variational inequality
problem (5.1) is a special case of hierarchical fixed point problems HFPP (1.2). In VIP (5.1),
one takes f : R2→ R2 as follows:

f (x,y) = (2x+2y+ sin(x),−2x+2y+ sin(y)) , ∀x,y ∈ R .

The feasible set C is given by C =
{

x ∈ R2|−10e≤ x≤ 10e
}

, where e = (1,1)T. It is not hard
to check that f is Lipschitz continuous with constant L =

√
26 and 1-strongly monotone [9].

Therefore, (5.1) has a unique solution x∗ = (0,0)T.
On the other hand, let us consider the following nonlinear optimization problem

minH(x) = 1+ x2
1− e−x2

2 +‖x‖1 , (5.2)

where x = (x1,x2)
T ∈ R2

+. We know that the optimal solution of H(x) is x∗ = (0,0)T. Set
F(x)= 1+x2

1−e−x2
2 and G(x)= ‖x‖1. Take A(x)=∇F(x)=

(
2x1,2x2e−x2

2
)T and B(x)= ∂G(x).

It is easy to check that A is 1
2-inverse strongly monotone on R2

+, and G is convex and lower
semicontinuous but not differentiable. We have

(I +µB)−1(x) = max
(

0,1− µ

|x|

)
x .

Obviously, ϒ = Φ
⋂

Ψ
⋂

Fix(S) = (0,0)T 6= /0. Therefore, x∗ = (0,0)T. In all algorithms,
set ψn = 1

n+1 , νn = 1
(n+1)2 , µ = 0.5 and γ = 1/

√
26, take inertial parameter δn = 0.4 in the
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Algorithm (3.1) and the Algorithm (4.1). Denote by En = ‖xn− x∗‖2 the error of iterative
algorithms and En < 10−3 the common stopping criterion. Let x−1 = x0, z0 be randomly
generated by the MATLAB function k×rand(m,1) (where Case I: k = 1, Case II: k = 10, Case III:
k = 100, and Case IV: k = 1000). The numerical results are reported in Table 1 and Fig. 1.

TABLE 1. Compare the number of iterations for Example 5.1

Cases Algorithm (3.1) Algorithm (4.1) Algorithm (1.7)

I 26 11 109
II 61 56 421
III 139 115 2099
IV 272 201 > 5000
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(a) Case I
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(d) Case IV

FIGURE 1. Convergence behavior of iteration error {En} for Example 5.1

Example 5.2. In this example, we find common solutions for variational inequality problems
and least squares optimization problems. First, in VIP (5.1), we consider the linear operator
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f (x) = Mx+q, where q ∈ Rm and

M = NNT+U +D ,

where N is a m×m matrix, U is a m×m skew-symmetric matrix, and D is a m×m diagonal
matrix with its diagonal entries being nonnegative (hence M is positive symmetric definite). The
feasible set C is given by C = {x ∈ Rm :−5≤ xi ≤ 5, i = 1, . . . ,m}. It is clear that f is monotone
and Lipschitz continuous with constant L = ‖M‖. In this experiment, all entries of N,U are
generated randomly and uniformly in [−5,5] and D is generated randomly in [1,5]. Let q = 0.
Then, the solution set is {0}.

On the other hand, let us consider the following least squares optimization problem via

minH(x) =
1
2
‖x− e‖2

2 +‖x‖1 , (5.3)

where x∈Rm, e=(1,1, . . . ,1)T ∈Rm. We know the optimal solution of H(x) is x∗=(0,0, . . . ,0)T.
Setting F(x) = 1

2 ‖x− e‖2
2 and G(x) = ‖x‖1. Taking A(x) = ∇F(x) = (x− e) and B(x) = ∂G(x).

It is easy to check that A is 1-inverse strongly monotone, and hence µ ⊂ (0,2). Taking T = PC
and S = I− γ f . Obviously, we get that ϒ = Φ

⋂
Ψ
⋂

Fix(S) = (0,0, . . . ,0)T 6= /0 and hence
x∗ = (0,0, . . . ,0)T. In all algorithms, set ψn = 1

n+1 , νn = 1
(n+1)2 , µ = 1 and γ = 1/L, take

δn = 0.4 in the Algorithm (3.1) and the Algorithm (4.1). Let x−1 = x0, z0 be randomly generated
by the MATLAB function 10×rand(m,1). Iterative error En and stopping criterion are the same
as in Example 5.1. We test the convergence behavior under different dimensional parameters m.
The numerical results are reported in Table 2 and Fig. 2.

TABLE 2. Compare the number of iterations for Example 5.2

Dimensional Algorithm (3.1) Algorithm (4.1) Algorithm (1.7)

2 26 16 223
5 105 66 540
10 281 188 759
20 877 734 1070

Example 5.3. In this example, we consider common solutions for variational inequality problems
and mixed equilibrium problems. First, in VIP (5.1), f :=

(
ai j
)

1≤i, j≤m is an m×m square matrix
whose terms are given by

fi j =


1, if j = m+1− i and j < i ,
−1, if j = m+1− i and j > i ,
0, otherwise .

The feasible set is given by C := {−5 ≤ xi ≤ 5, i = 1,2, . . . ,m}. It is clear that f is Lipschitz
continuous with constant L = 1 and x∗ = (0,0, . . . ,0)T is the solution. The mixed equilibrium
problem (in short, MEP) is described as follows

find x∗ ∈C such that B(x∗,x)+ 〈Ax∗,x− x∗〉 ≥ 0 , ∀x ∈C , (5.4)

where B : C×C→ R is a bifunction and A : C→H is a nonlinear mapping. Let Ω be the solution
set of MEP (5.4). The MEP (5.4) is a special case of the MVIP (1.1) [10]. Let A : Rm→ Rm be
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(a) Dimensional m = 2
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(c) Dimensional m = 10
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(d) Dimensional m = 20

FIGURE 2. Convergence behavior of iteration error {En} for Example 5.2

defined by A = 3x and B : Rm
+×Rm

+→ Rm be defined by B(x,y) = x(y− x). It is easy to get that
A is 1

3 -inverse strongly monotone, and hence µ ⊂ (0, 2
3). Let T = PC and S = I− γ f . Obviously,

one has ϒ = Ω
⋂

Ψ
⋂

Fix(S) = (0,0, . . . ,0)T 6= /0. Hence x∗ = (0,0, . . . ,0)T. In all algorithms,
set m = 10, ψn =

1
n+1 , νn =

1
(n+1)2 , µ = 1

4 and γ = 1, take δn = 0.4 in the Algorithm (3.1) and the
Algorithm (4.1). Let x−1 = x0, z0 be randomly generated by the MATLAB function k×rand(m,1)
(where Case I: k = 1, Case II: k = 10, Case III: k = 50, and Case IV: k = 100). Iterative error
En and the stopping criterion are the same as in Example 5.1. We test the convergence behavior
under different initial values. The numerical results are reported in Table 3 and Fig. 3.

Remark 5.1. (1) From Example 5.1–Example 5.3, we know that our proposed Algorithm (3.1)
and Algorithm (4.1) are easy to implement, efficient and robust.

(2) From Table 1–Table 3 and Fig. 1–Fig. 3, we find that the inertial shrinking projection
Algorithm (4.1) converges faster than the inertial shrinking projection algorithm without
extrapolating step (3.1) and the hybrid iterative Algorithm (1.7). In addition, our proposed
Algorithm (3.1) and Algorithm (4.1) are significantly faster than Algorithm (1.7), and the
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TABLE 3. Compare the number of iterations for Example 5.3

Cases Algorithm (3.1) Algorithm (4.1) Algorithm (1.7)

I 363 323 391
II 488 470 650
III 681 656 2081
IV 723 701 4109
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(d) Case IV

FIGURE 3. Convergence behavior of iteration error {En} for Example 5.3

choice of initial values and the scale of the dimension do not affect the computational
performance of our algorithms.

(3) Our shrinking projection iterative Algorithm (3.1) and Algorithm (4.1) have less oscillation
and enjoy faster convergence speed than the hybrid iterative Algorithm (1.7).
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