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Abstract
In this paper, we investigate two new algorithms for solving bilevel pseudomonotone
variational inequality problems in real Hilbert spaces. The advantages of our algo-
rithms are that they only need to calculate one projection on the feasible set in each
iteration, and do not require the prior information of the Lipschitz constant of the cost
operator. Furthermore, two new algorithms are derived to solve variational inequal-
ity problems. We establish the strong convergence of the proposed algorithms under
some suitable conditions imposed on parameters. Finally, several numerical results
and applications in optimal control problems are reported to illustrate the efficiency
and advantages of the proposed algorithms.
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1 Introduction

Let C be a closed and convex nonempty subset in a real Hilbert space H with inner
product , and induced norm . Let us first review some nonlinear mappings
in convex analysis. For any x, y ∈ H , the mapping M : H → H is said to be
(i) L-Lipschitz continuous with L > 0 if Mx − My L x − y (if L = 1,
then M is called nonexpansive); (ii) γ -inverse strongly monotone (or γ -cocoercive)
if there exists γ > 0 such that Mx − My, x − y γ Mx − My 2; (iii) α-
strongly monotone if there exists α > 0 such that Mx − My, x − y α x − y 2;
(iv) monotone if Mx − My, x − y 0; (v) pseudomonotone if Mx, y − x

0 My, y − x 0; (vi) sequentially weakly continuous if for each sequence
{xn} converges weakly to x implies {Mxn} converges weakly to Mx. Through the
above definitions, it is easy to see that (iii) =⇒ (iv) =⇒ (v). The main purpose of
this paper is to devote several efficient numerical methods for solving the bilevel
variational inequality problem (shortly, BVIP) involving a pseudomonotone mapping
in real Hilbert spaces. Let M : H → H and S : H → H be two single-valued
mappings. Recall that the variational inequality problem (VIP) for the mapping M

on C is described as follows:

find y∗ ∈ C such that My∗, z − y∗ ≥ 0, ∀z ∈ C . (VIP)

We denote Ω the set of all solutions of the (VIP). Recall that the (BVIP) is formed
as follows:

find x† ∈ Ω such that Sx†, y − x† ≥ 0, ∀y ∈ Ω . (BVIP)

Since the bilevel variational inequality problems include a number of problems,
such as, quasi-variational inequality problems, complementary problems, and so on.
It is therefore necessary to develop some fast and efficient numerical approaches to
solve the bilevel variational inequalities. Some recent work on solution methods for
(BVIP) can be found in [1–4]. There are also a number of methods dealing with
approximation solution of (VIP); see, e.g., [5–8]. The simplest of these algorithms is
the projected-gradient method, which, starting from any x0 ∈ C, iteratively updates
xn+1 according to the formula

xn+1 = PC (xn − ϑMxn) , (1.1)

where M is a nonlinear mapping, ϑ is a positive fixed step size and PC denotes the
metric projection onto C (see definition in Section 2). The projected-gradient method
is based on the observation that x† ∈ C is a solution of (VIP) if and only if

x† = PC x† − ϑMx† . (1.2)

This projected-gradient method (1.1) can be easily implemented because it only
needs to calculate the function value and the projection onto C once in each iteration.
However, the projected-gradient method requires a restrictive hypothesis on M for
the convergence, that is, M is strongly monotone and Lipschitz continuous. To relax
the strong assumptions required by the projected-gradient method and thus broaden
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the class of the problems that we can solve, the extragradient method was proposed.
Because of (1.2), x† ∈ C is a solution of (VIP) if and only if

x† = PC x† − ϑM PC x† − ϑMx† .

The basic idea of this method is to update xn+1 according to the double projection
formula

xn+1 = PC(xn − ϑM(PC(xn − ϑMxn))) .

The extragradient method (EGM) was first proposed by Korpelevich [9], as shown
below. Taking the initial value x0 ∈ C, we generate a succession {xn} such that

yn = PC(xn − ϑMxn) ,

xn+1 = PC(xn − ϑMyn) .
(EGM)

It is known that the convergence of the extragradient method is proved under the
following hypothesis: Ω = ∅, mapping M is L-Lipschitz continuous monotone and
fixed step size ϑ ∈ (0, 1/L). However, we note that the (EGM) needs to perform two
projection calculations on the feasible set C in each iteration, which may seriously
affect the computational performance, especially when C is a general closed convex
set. To overcome this disadvantage, Censor, Gibali and Reich [10] introduced the
subgradient extragradient method (SEGM), which can be seen as a modification of
the (EGM). They replaced the second projection onto C with a projection onto a
half-space. More precisely, their algorithm is expressed as follows:
⎧
⎪⎨

⎪⎩

yn = PC(xn − ϑMxn) ,

Tn = {z ∈ H xn − ϑMxn − yn, z − yn 0} ,

xn+1 = PTn(xn − ϑMyn) ,

(SEGM)

where mapping M is L-Lipschitz continuous monotone and fixed step size ϑ is
in (0, 1/L). They confirmed that the (SEGM) is weakly convergent in a Hilbert
space. It is worth noting that the projection onto a half-space Tn can be calculated
by an explicit formula. This greatly improves the computational performance of the
(EGM).

Recently, Dong, Jiang and Gibali [11] proposed a modified subgradient extra-
gradient method (MSEGM) for solving the (VIP) by improving the step size in the
second step of the (SEGM). This method was inspired by the subgradient extra-
gradient method and the projection and contraction method [12, 13]. Their primary
example demonstrates the numerical performance and advantages of this newmethod
compared with some existing approaches. Indeed, the (MSEGM) is of the form:
⎧
⎪⎨

⎪⎩

yn = PC(xn − ϑnMxn) ,

Tn = {z ∈ H xn − ϑnMxn − yn, z − yn 0} ,

xn+1 = PTn(xn − θϑnχnMyn) ,

(MSEGM)

where θ ∈ (0, 2) and

χn := xn − yn, cn

cn
2

, cn := xn − yn − ϑn(Mxn − Myn) , (1.3)
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and ϑn := δζmn(δ > 0, ζ ∈ (0, 1)) and mn is the smallest nonnegative integer such
that

ϑn Mxn − Myn φ xn − yn , φ ∈ (0, 1) .

They proved that the iterative sequence formed by the (MSEGM) converges
weakly to a solution of the (VIP) under some approximate conditions. Note that the
(MSEGM) uses an Armijo-type line search rule to update the step size in each iter-
ation, so it does not require the prior knowledge of the Lipschitz constant of the
mapping.

Next, we introduce a problem related to the (BVIP). Yamada [14] studied the
problem of finding a solution of the variational inequality problem over the fixed
point set of nonexpansive mappings. More precisely, this problem is stated as follows:

find x† ∈ Fix(T ) such that Sx†, y − x† ≥ 0 , ∀y ∈ Fix(T ) , (1.4)

where T : C → C is a nonexpansive mapping, and Fix(T ) = {x ∈ H : T x = x}
represents its fixed point set. Yamada introduced the hybrid steepest descent method
for solving problem (1.4), which read as follows:

xn+1 = T xn − δn+1ϑS(T xn) , (1.5)

where mapping S is γ -inverse strongly monotone and L-Lipschitz continuous, fixed
step size ϑ is in 0, 2γ /L2 and {δn} is a suitable sequence that satisfies some con-
ditions. He proved that the iterative sequence {xn} formed by (1.5) converges to a
solution of problem (1.4) in norm. Recently, many scholars have used this method
to solve various optimization problems, such as split feasibility problems and varia-
tional inequalities; see, e.g., [4, 15, 16]. Let δ > 0. By setting T x = PC(x − δMx),
we see that x ∈ Fix(T ) iff x ∈ Ω . Thus, the (BVIP) becomes problem (1.4) and
we can use iterative algorithm (1.5) to solve the (BVIP). However, the convergence
of the hybrid steepest descent method requires that mapping M is inversely strong
monotone, and this strict assumption may affect the efficiency of the used algorithm.
Furthermore, it can be seen from the iterative algorithm (1.5) that the constants L and
γ of the mapping S must be known.

Recently, Thong and Hieu [17] combined the modified subgradient extragradient
method (MSEGM) with the hybrid steepest descent method (1.5), and introduced a
strongly convergent modified subgradient extragradient method for solving bilevel
pseudomonotone variational inequality problems in real Hilbert spaces. Their algo-
rithm is illustrated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = PC(xn − ϑMxn) ,

Tn = {x ∈ H xn − ϑMxn − yn, x − yn 0} ,

zn = PTn(xn − θϑχnMyn) ,

xn+1 = zn − ϕnγ Szn ,

(1.6)

where mapping M is LM -Lipschitz continuous pseudomonotone on H , sequen-
tially weakly continuous on C, mapping S is LS-Lipschitz continuous and α-strongly
monotone on H , {χn} is defined in (1.3), the fixed step size ϑ is in (0, 1/LM),
θ ∈ (0, 2), γ ∈ 0, 2α/L2

S and {ϕn} is a real sequence in (0, 1) that satisfies
limn→∞ ϕn = 0 and ∞

n=1 ϕn = ∞. Then, the sequence {xn} devised by (1.6)
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converges to the unique solution of the (BVIP) in norm. Moreover, their numerical
experiments showed that the new algorithm has a better performance than the related
one. It should be mentioned that Algorithm (1.6) uses a fixed step size and thus the
Lipschitz constant of mapping M must be known.

In recent years, the development of fast iterative algorithms has attracted enormous
interest, in particular, the inertial technology, which is based on discrete versions
of a second-order dissipative dynamic system. Many researchers have constructed
various fast iterative algorithms by using the inertial technology; see, e.g., [18–21]
and the references therein. One of the common features of these algorithms is that
the next iteration depends on the combination of the previous two iterations. Note
that this minor change greatly improves the performance of the algorithms. Recently,
Dong et al. [22] introduced an inertial projection and contraction method (IPCM) to
solve the monotone (VIP). For any initial points x0, x1 ∈ H , the iterative sequence
{xn+1} is devised as follows:
⎧
⎪⎨

⎪⎩

un = xn + τn(xn − xn−1) ,

yn = PC(un − ϑMun) ,

xn+1 = un − θχncn ,

(IPCM)

where θ ∈ (0, 2), ϑ > 0 and

χn := un − yn, cn

cn
2

, cn := un − yn − ϑ(Mun − Myn) .

They proved that the (IPCM) achieves the weak convergence in a Hilbert space
under appropriate assumptions. Moreover, the stated Algorithm (IPCM) shown the
advantages and efficiency over other algorithms through some computational tests.

Motivated and inspired by the above work, in this paper, we introduce two new
self-adaptive iterative algorithms for solving bilevel pseudomonotone variational
inequality problems in real Hilbert spaces. Our algorithms do not require the prior
knowledge of the Lipschitz constant of the potential mapping, and only need to cal-
culate one projection on the feasible set in each iteration. Under certain suitable
conditions, we prove that the iterative sequences generated by our algorithms con-
verge strongly to a solution of (BVIP). Based on this, we derive two new strongly
convergent methods to solve pseudomonotone (VIP). Finally, some computational
tests are presented to support the theoretical results of our new iterative schemes.

The present paper is built up as follows. Some essential definitions and technical
lemmas, that need to be used, are given in the next section. Section 3 describes the
algorithms and analyzes their convergence. In Section 4, some numerical examples
are presented to illustrate the behavior of our algorithms and compare them with
the related one. In Section 5, we apply the derived methods to solve optimal control
problems. Finally, a brief summary is given in Section 6, the last section.

2 Preliminaries

Let C be a closed and convex nonempty subset of a real Hilbert space H . The weak
convergence and strong convergence of {xn}∞n=1 to x are represented by xn and
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xn → x, respectively. For each x, y ∈ H , we have

x + y 2 x 2 + 2 y, x + y . (2.1)

For every point x ∈ H , there exists a unique nearest point inC, denoted by PC(x),
such that PC(x) := argmin x − y , y ∈ C}. PC is called the metric projection of
H onto C. It is known that PC(x) has the following basic properties:

PC(x) − PC(y) 2 PC(x) − PC(y), x − y , ∀x ∈ H , y ∈ H . (2.2)
x − PC(x), y − PC(x) 0 , ∀x ∈ H , y ∈ C . (2.3)

We give some explicit formulas to calculate projections on special feasible sets.

(i) The projection of x onto a half-space Hu,v = {x u, x v} is given by

PHu,v (x) = x − max
u, x v

u 2
, 0 u .

(ii) The projection of x onto a box Box[a, b] = {x : a ≤ x ≤ b} is given by
PBox[a,b](x)i = min {bi, max {xi, ai}} .

(iii) The projection of x onto a ball B[p, q] = {x x − p q} is given by
PB[p,q](x) = p + q

max x − p , q} (x − p) .

The following lemmas play important roles in our proofs.

Lemma 2.1 ([23]) Let C be a closed and convex nonempty subset of a real Hilbert
space H and let M : C → H be a continuous and pseudomonotone mapping.
Then, x† is a solution of the (VIP) if and only if Mx, x − x† ≥ 0, ∀x ∈ C.

Lemma 2.2 ([14]) Suppose that mapping S : H → H is LS-Lipschitz continuous
and α-strongly monotone with 0 < α ≤ LS . Define the mapping T γ : H → H by
T γ x = (I − ϕγ S)(T x), ∀x ∈ H , where T : H → H is a nonexpansive mapping,
γ > 0 and ϕ ∈ (0, 1]. Then, T γ is a contraction provided that γ < 2α

L2
S

, that is,

T γ x − T γ y (1 − ϕχ) x − y , ∀x, y ∈ H ,

where χ = 1 − 1 − γ 2α − γL2
S ∈ (0, 1).

Lemma 2.3 ([24]) Let {pn} be a positive sequence, {qn} be a sequence of real
numbers, and {σn} be a sequence in (0, 1) such that ∞

n=1 σn = ∞. Suppose that

pn+1 ≤ (1 − σn) pn + σnqn, ∀n ≥ 1 .

If lim supk→∞ qnk
≤ 0 for every subsequence {pnk

} of {pn} satisfying lim infk→∞
(pnk+1 − pnk

) ≥ 0, then limn→∞ pn = 0.
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3 Main results

In this section, we introduce two new self-adaptive iterative methods for solving the
(BVIP) and analyze their convergence. The algorithms are inspired by the inertial
method, the hybrid steepest descent method (1.5), the modified subgradient extra-
gradient algorithm (1.6) and the inertial projection and contraction method (IPCM).
Furthermore, our iterative schemes embed an Armijo-type step size criterion so that
they can work without the prior knowledge of the Lipschitz constant of the involved
mapping. Before starting to state the main results, we assume that our algorithms
satisfy the following assumptions.

(C1) The feasible set C is a nonempty, closed and convex subset of H .
(C2) The solution set of the (VIP) is nonempty, that is, Ω = ∅.
(C3) The mapping M : H → H is LM -Lipschitz continuous and pseudomono-

tone on H , and sequentially weakly continuous on C.
(C4) The mapping S : H → H is LS-Lipschitz continuous and α-strongly

monotone on H such that α ≤ LS .
(C5) Suppose that the positive sequence {εn} satisfies limn→∞ εn

ϕn
= 0, where

{ϕn} ⊂ (0, 1) such that limn→∞ ϕn = 0 and ∞
n=1 ϕn = ∞.

3.1 Themodified inertial subgradient extragradient algorithm

In this subsection, we propose a new self-adaptive iterative scheme that performs
only one projection onto the feasible set. Now, we state the suggested Algorithm 3.1
as follows.

Remark 3.1 We make the following observations for Algorithm 3.1.

(i) It follows from (3.1) and Assumption (C5) that

lim
n→∞

τn

ϕn

xn − xn−1 0 .

Indeed, we obtain τn xn − xn−1 εn, ∀n, which together with
limn→∞ εn

ϕn
= 0 yields

lim
n→∞

τn

ϕn

xn − xn−1 lim
n→∞

εn

ϕn

= 0 .

(ii) It is worth noting that the definition of χn in our Algorithm 3.1 is different
from that in (IPCM). Combining (3.2) and (3.3), one sees that

un − yn, cn

cn
2

= un − yn
2 − ϑn Mun − Myn, un − yn

cn
2

≥ un − yn
2 − ϑn Mun − Myn un − yn

cn
2

≥ (1 − φ) un − yn
2

cn
2

.
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(iii) It is well known that if S : H → H is L-Lipschitz continuous and α-strongly
monotone on H and if Ω is a nonempty, closed and convex subset of H , then
the (BVIP) has a unique solution (see, e.g., [25]).

Next, we give some lemmas, which are very useful to prove the convergence of
our algorithms.

Lemma 3.4 Suppose that Assumptions (C1)–(C3) hold. The Armijo-like search rule
(3.2) is well defined and

min δ,
φζ

LM

≤ ϑn ≤ δ .

Proof Since M is LM -Lipschitz continuous, one has

Mun − M(PC(un − ϑMun)) LM un − PC(un − ϑMun) ,
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which is equivalent to

φ

LM

Mun − M(PC(un − ϑMun)) φ un − PC(un − ϑMun) .

This implies that (3.2) holds for all ϑ ≤ φ
LM

. Thus, ϑn is well defined. It is easy
to see that ϑn ≤ δ. If ϑn = δ, then this lemma is proved; otherwise, if ϑn < δ, by the
search rule (3.2), we know that ϑn

ζ
> ϑn must violate inequality (3.2), that is,

ϑn

ζ
Mun − M PC un − ϑn

ζ
Mun > φ un − PC un − ϑn

ζ
Mun ,

which, combining with the fact that the mapping M is LM -Lipschitz continuous, gets
ϑn >

φζ
LM

. This completes the proof of Lemma 3.4.

Lemma 3.5 If yn = un or cn = 0 in Algorithm 3.1, then yn ∈ Ω .

Proof From the fact that mapping M is LM -Lipschitz continuous and (3.2), we get

cn un − yn − ϑn(Mun − Myn)

un − yn ϑn Mun − Myn

≥ (1 − φ) un − yn .

It can be easily proved that cn (1 + φ) un − yn . Therefore,

(1 − φ) un − yn cn (1 + φ) un − yn ,

and thus un = yn iff cn = 0. Hence, if un = yn or cn = 0, then we obtain yn =
PC(yn−ϑnMyn). In view of (1.2), we get yn ∈ Ω . That is the desired conclusion.

Lemma 3.6 Suppose that Assumptions (C1)–(C3) hold. Let {zn}, {yn} and {un} be
three sequences created by Algorithm 3.1. Then, for all x† ∈ Ω ,

zn − x† 2 un − x† 2 un − zn − θχncn
2 − θ(2 − θ)

(1 − φ)2

(1 + φ)2
un − yn

2 .

Proof From x† ∈ Ω ⊂ C ⊂ Tn and the property of projection (2.2), we get

2 zn − x† 2 ≤ 2 zn − x†, un − θϑnχnMyn − x†

zn − x† 2 un − θϑnχnMyn − x† 2 zn − un + θϑnχnMyn
2

zn − x† 2 un − x† 2 + θ2ϑ2
nχ2

n Myn
2 − 2 un − x†, θϑnχnMyn

zn − un
2 − θ2ϑ2

nχ2
n Myn

2 − 2 zn − un, θϑnχnMyn

zn − x† 2 un − x† 2 zn − un
2 − 2 zn − x†, θϑnχnMyn ,

which implies that

zn − x† 2 un − x† 2 zn − un
2 − 2θϑnχn zn − x†, Myn . (3.4)
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Combining the pseudomonotonicity of mapping M , yn ∈ C and x† ∈ Ω , we can
show from Lemma 2.1 that Myn, yn − x† ≥ 0, which means that Myn, zn − x† ≥
Myn, zn − yn . Hence,

− 2θϑnχn Myn, zn − x† ≤ −2θϑnχn Myn, zn − yn . (3.5)

Since zn ∈ Tn, one obtains un − ϑnMun − yn, zn − yn 0. This shows that

un − yn − ϑn(Mun − Myn), zn − yn ϑn Myn, zn − yn . (3.6)

Using (3.5), (3.6) and the definition of cn, we obtain

− 2θϑnχn Myn, zn − x† ≤ −2θχn cn, zn − yn

= −2θχn cn, un − yn 2θχn cn, un − zn . (3.7)

Now, we estimate −2θχn cn, un−yn and 2θχn cn, un−zn . From the definitions
of χn and cn and (3.2), we have

cn, un − yn un − yn
2 − ϑn Mun − Myn, un − yn

un − yn
2 − ϑn Mun − Myn un − yn

un − yn
2 − φ un − yn

2

= χn cn
2 ,

which indicates that

− 2θχn cn, un − yn 2θχ2
n cn

2 . (3.8)

According to the basic inequality 2ab = a2 + b2 − (a − b)2, we have

2θχn cn, un − zn un − zn
2 + θ2χ2

n cn
2 un − zn − θχncn

2 . (3.9)

It follows from Lemma 3.5 that cn (1 + φ) un − yn , which combining the
definition of χn yields that

χ2
n cn

2 = (1 − φ)2
un − yn

4

cn
2

≥ (1 − φ)2

(1 + φ)2
un − yn

2 . (3.10)

Combining (3.4), (3.7), (3.8), (3.9) and (3.10), we conclude that

zn − x† 2 un − x† 2 un − zn − θχncn
2 − θ(2 − θ)

(1 − φ)2

(1 + φ)2
un − yn

2 .

This completes the proof.

Lemma 3.7 [26, Lemma 3.3] Suppose that Assumptions (C1)–(C3) hold. Let {un}
and {yn} be two sequences formulated by Algorithm 3.1. If there exists a subsequence
{unk

} of {un} converges weakly to z ∈ H and limk→∞ unk
−ynk

0, then z ∈ Ω .

Now, we are in a position to prove the convergence of the suggested Algorithm 3.1.

Theorem 3.1 Suppose that Assumptions (C1)–(C5) hold. Then, the sequence {xn}
defined by Algorithm 3.1 converges to the unique solution of the (BVIP) in norm.
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Proof We divide the proof into four statements.

Claim 1 The sequence {xn} is bounded. Indeed, thanks to Lemma 3.6 and θ ∈ (0, 2),
one has

zn − x† un − x† , ∀n ≥ 1 . (3.11)

From the definition of un, one sees that

un − x† xn − x† τn xn − xn−1

xn − x† ϕn · τn

ϕn

xn − xn−1 . (3.12)

It follows from Remark 3.1 (i) that τn

ϕn
xn − xn−1 0 as n → ∞. Thus, there

is a constant Q1 > 0 such that
τn

ϕn

xn − xn−1 Q1, ∀n ≥ 1 . (3.13)

Combining (3.11), (3.12) and (3.13), one obtains

zn − x† un − x† xn − x† ϕnQ1, ∀n ≥ 1 . (3.14)

Using the definition of xn+1, Lemma 2.2 and (3.14), one concludes

xn+1 − x† (I − ϕnγ S)zn − (I − ϕnγ S)x† − ϕnγ Sx†

(I − ϕnγ S)zn − (I − ϕnγ S)x† ϕnγ Sx†

≤ (1 − ϕnχ) zn − x† ϕnγ Sx†

≤ (1 − ϕnχ) xn − x† ϕnχ · Q1

χ
+ ϕnχ · γ

χ
Sx† (3.15)

≤ max xn − x† ,
Q1 + γ Sx†

χ

≤ · · · ≤ max x1 − x† ,
Q1 + γ Sx†

χ
,

where χ = 1 − 1 − γ 2α − γL2
S ∈ (0, 1). This shows that {xn} is bounded. We

assert that {un}, {yn}, {zn} and {Szn} are also bounded sequences.
Claim 2

θ(2 − θ)
(1 − φ)2

(1 + φ)2
un − yn

2 un − zn − θχncn
2

xn − x† 2 xn+1 − x† 2 + ϕnQ4

for some Q4 > 0. Indeed, it follows from (3.14) that

un − x† 2 ≤ xn − x† ϕnQ1
2

xn − x† 2 + ϕn 2Q1 xn − x† ϕnQ
2
1 (3.16)

xn − x† 2 + ϕnQ2
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for some Q2 > 0. From (2.1), (3.16), Lemmas 2.2 and 3.6, we obtain

xn+1 − x† 2 (I − ϕnγ S)zn − (I − ϕnγ S)x† − ϕnγ Sx†

(I − ϕnγ S)zn − (I − ϕnγ S)x† 2 − 2ϕnγ Sx†, xn+1 − x†

≤ (1 − ϕnχ)2 zn − x† 2 + 2ϕnγ Sx†, x† − xn+1

zn − x† 2 + ϕnQ3 (3.17)

xn − x† 2 + ϕnQ4 un − zn − θχncn
2 − θ(2 − θ)

(1 − φ)2

(1 + φ)2
un − yn

2 ,

where Q4 := Q2 + Q3. The desired result can be achieved by a simple conversion.

Claim 3

xn+1 − x† 2 ≤ (1 − ϕnχ) xn − x† 2 + ϕnχ
2γ

χ
Sx†, x† − xn+1 + 3Qτn

ϕnχ
xn − xn−1

for some Q > 0. Indeed, we have

un − x† 2 xn + τn(xn − xn−1) − x† 2

xn − x† 2 + 2τn xn − x†, xn − xn−1 + τ 2n xn − xn−1
2 (3.18)

xn − x† 2 + 2τn xn − x† xn − xn−1 τ 2n xn − xn−1
2 .

Using (2.1), (3.1) and (3.11), one has

xn+1 − x† 2 (I − ϕnγ S)zn − (I − ϕnγ S)x† − ϕnγ Sx† 2

(I − ϕnγ S)zn − (I − ϕnγ S)x† 2 − 2ϕnγ Sx†, xn+1 − x†

≤ (1 − ϕnχ)2 zn − x† 2 + 2ϕnγ Sx†, x† − xn+1 (3.19)

≤ (1 − ϕnχ) un − x† 2 + 2ϕnγ Sx†, x† − xn+1 .

Substituting (3.18) into (3.19), we obtain

xn+1 − x† 2 ≤ (1 − ϕnχ) xn − x† 2 + 2ϕnγ Sx†, x† − xn+1

+τn xn − xn−1 2 xn − x† τ xn − xn−1

≤ (1 − ϕnχ) xn − x† 2 + ϕnχ
2γ

χ
Sx†, x† − xn+1 + 3Qτn

ϕnχ
xn − xn−1 ,

where Q := supn∈N xn − x† , τ xn − xn−1 > 0 and χ ∈ (0, 1) is defined in
Claim 2.

Claim 4 The sequence xn − x† 2 converges to zero. From Lemma 2.3 and
Remark 3.1 (i), it remains to show that lim supk→∞ Sx†, x† − xnk+1 ≤ 0 for every
subsequence xnk

− x† of xn − x† satisfying

lim inf
k→∞ xnk+1 − x† xnk

− x† ≥ 0 .
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For this purpose, we assume that xnk
− x† is a subsequence of xn − x†

such that lim infk→∞ xnk+1 − x† xnk
− x† ≥ 0. Then,

lim inf
k→∞ xnk+1 − x† 2 xnk

− x† 2

= lim inf
k→∞ xnk+1 − x† xnk

− x† xnk+1 − x† xnk
− x† ≥ 0 .

It follows from Claim 2 and Assumption (C5) that

θ(2 − θ)
(1 − φ)2

(1 + φ)2
unk

− ynk

2 unk
− znk

− θχnk
cnk

2

≤ lim sup
k→∞

xnk
− x† 2 xnk+1 − x† 2 + ϕnk

Q4

≤ lim sup
k→∞

xnk
− x† 2 xnk+1 − x† 2 + lim sup

k→∞
ϕnk

Q4

= −lim inf
k→∞ xnk+1 − x† 2 xnk

− x† 2

≤ 0 ,

which indicates that

lim
k→∞ ynk

− unk
0 and lim

k→∞ unk
− znk

− θχnk
cnk

0 . (3.20)

From cnk
(1 − φ) unk

− ynk
and the definition of χnk

, we have

unk
− znk

unk
− znk

− θχnk
cnk

θχnk
cnk

unk
− znk

− θχnk
cnk

θ(1 − φ)
unk

− ynk
2

cnk

(3.21)

unk
− znk

− θχnk
cnk

θ unk
− ynk

.

Combining (3.20) and (3.21), we get

lim
k→∞ znk

− unk
0 . (3.22)

Moreover, we have

xnk+1 − znk
ϕnk

γ Sznk
0 , as n → ∞ , (3.23)

and
xnk

− unk
ϕnk

· τnk

ϕnk

xnk
− xnk−1 0 , as n → ∞ . (3.24)

From (3.22), (3.23) and (3.24), we obtain

xnk+1 − xnk
xnk+1 − znk

znk
− unk

unk
− xnk

0 , as n → ∞ . (3.25)

Since {xnk
} is bounded, it follows that there exists a subsequence xnkj

of xnk
,

which converges weakly to some z ∈ H , such that

lim sup
k→∞

Sx†, x† − xnk
= lim

j→∞ Sx†, x† − xnkj
= Sx†, x† − z . (3.26)

Numerical Algorithms (2021) 88:1757–1786 1769



By using (3.24), we get that unk
. This together with limk→∞ unk

−ynk
0

and Lemma 3.7 concludes that z ∈ Ω . From (3.26) and x† is the unique solution of
the (BVIP), we get

lim sup
k→∞

Sx†, x† − xnk
= Sx†, x† − z ≤ 0 . (3.27)

Using (3.25) and (3.27), we obtain

lim sup
k→∞

Sx†, x† − xnk+1 = lim sup
k→∞

Sx†, x† − xnk
≤ 0 . (3.28)

Therefore, combining (3.28), Remark 3.1 (i) and Claim 3, in the light of
Lemma 2.3, we conclude that limn→∞ xn − x† 0, i.e., xn → x†. We have thus
proved the theorem.

Now, we give a special case of Algorithm 3.1. Set S(x) = x − f (x) in Theo-
rem 3.1, where mapping f : H → H is a ρ-contraction. It can be easily verified
that mapping S : H → H is (1 + ρ)-Lipschitz continuous and (1 − ρ)-strongly
monotone. In this situation, by picking γ = 1, we get a new modified inertial sub-
gradient extragradient algorithm for solving (VIP). More specifically, we get the
following results.

Corollary 3.1 Suppose that mapping M : H → H is LM -Lipschitz continu-
ous pseudomonotone on H and sequentially weakly continuous on C, and mapping
f : H → H is a ρ-contraction with ρ ∈ [0, √5 − 2). Take τ > 0, δ > 0,
ζ ∈ (0, 1), φ ∈ (0, 1) and θ ∈ (0, 2). Assume that the positive sequence { n}
satisfies limn→∞ n

ϕn
= 0, where {ϕn} ⊂ (0, 1) such that limn→∞ ϕn = 0 and

∞
n=1 ϕn = ∞. Let x0, x1 ∈ H be two arbitrary initial points and iterative sequence

{xn} be generated by the following
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = xn + τn(xn − xn−1) ,

yn = PC(un − ϑnMun) ,

Tn := {x ∈ H un − ϑnMun − yn, x − yn 0} ,

zn = PTn(un − θϑnχnMyn) ,

xn+1 = (1 − ϕn)zn + ϕnf (zn) ,

(3.29)

where {τn}, {ϑn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively. Then
the iterative sequence {xn} formed by (3.29) converges to x† ∈ Ω in norm, where
x† = PΩ f x† .

Remark 3.2 Our Corollary 3.1 improves and generalizes some recent results in the
literature [11, 17, 27] based on the following observations. (1) Our Algorithm (3.29)
is strongly convergent while the algorithm (MSEGM) introduced by Dong et al. [11]
only obtains weak convergence in an infinite-dimensional Hilbert space. (2) The
Algorithm (40) suggested by Thong and Hieu in [17] is a fixed step algorithm, but the
proposed iterative scheme (3.29) is self-adaptive, i.e., it means that our algorithm can
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work without knowing the prior information of the Lipschitz constant of the mapping.
(3) When the inertial parameter τn = 0 in (3.29), then the stated Algorithm (3.29) is
similar to Thong and Gibali’s Algorithm 3.2 [27]. Notice that the mapping contained
in our Algorithm (3.29) is pseudomonotone, whereas the corresponding mappings in
Dong et al.’s Algorithm (MSEGM) and Thong and Gibali’s Algorithm 3.2 [27] are
monotone.

3.2 The newmodified inertial projection and contraction algorithm

In this subsection, we introduce a new modified inertial projection and contraction
algorithm for solving (BVIP). The iterative procedure only involves the calculation
of one projection, and it can work without the prior information of the Lipschitz
constant of the mapping. The new Algorithm 3.2 is stated as follows.

The following lemma plays a vital role in the convergence analysis of the
algorithm.

Lemma 3.8 Suppose that Assumptions (C1)–(C3) hold. Let {zn}, {yn} and {un} be
three sequences generated by Algorithm 3.2. Then, for all x† ∈ Ω ,

zn − x† 2 un − x† 2 − 2 − θ

θ
un − zn

2 ,

and

un − yn
2 ≤ 1 + φ

(1 − φ)θ

2

un − zn
2 .

Proof By using of the definition of zn, one sees that

zn − x† 2 un − θχncn − x† 2

un − x† 2 − 2θχn un − x†, cn + θ2χ2
n cn

2 . (3.30)
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Combining (3.2) and (3.3), one obtains

un − x†, cn un − yn, cn yn − x†, cn

un − yn
2 − ϑn un − yn, Mun − Myn yn − x†, cn

un − yn
2 − ϑn un − yn Mun − Myn yn − x†, cn (3.31)

≥ (1 − φ) un − yn
2 + yn − x†, un − yn − ϑn (Mun − Myn) .

From yn = PC (un − ϑnMun) and the property of projection (2.3), one has

un − yn − ϑnMun, yn − x† ≥ 0 . (3.32)

Using x† ∈ Ω and yn ∈ C, one gets Mx†, yn − x† ≥ 0. With the aid of the
pseudomonotonicity of M , one obtains

Myn, yn − x† ≥ 0 . (3.33)

It follows from (3.3) that (1−φ) un −yn
2 = χn cn

2. This together with (3.31),
(3.32) and (3.33) implies that

un − x†, cn ≥ (1 − φ) un − yn
2 = χn cn

2 . (3.34)

Combining the definition of zn, (3.30) and (3.34), one concludes that

zn − x† 2 un − x† 2 − 2θχ2
n cn

2 + θ2χ2
n cn

2

un − x† 2 − 2 − θ

θ
θχncn

2

un − x† 2 − 2 − θ

θ
un − zn

2 .

On the other hand, by using of the definition of zn and (3.3), one sees that

un − yn
2 = χn

1 − φ
cn

2 = 1

χn(1 − φ)
χncn

2

= 1

χn(1 − φ)θ2
un − zn

2 . (3.35)

From cn (1 + φ) un − yn and the definition of χn, one obtains

χn = (1 − φ)
un − yn

2

cn
2

≥ 1 − φ

(1 + φ)2
. (3.36)

It implies from (3.35) and (3.36) that

un − yn
2 ≤ 1 + φ

(1 − φ)θ

2

un − zn
2 .

This completes the proof of Lemma 3.8.

Theorem 3.2 Suppose that Assumptions (C1)–(C5) hold. Then the sequence {xn}
formed by Algorithm 3.2 converges to the unique solution of the (BVIP) in norm.
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Proof The proof of the theorem is very similar to the proof of Theorem 3.1, we will
simplify some derivation steps.
Claim 1 The sequence {xn} is bounded. Indeed, thanks to Lemma 3.8, we have

zn − x† un − x† , ∀n ≥ 1 . (3.37)

From (3.12), (3.13) and (3.37), we obtain

zn − x† un − x† xn − x† ϕnQ1, ∀n ≥ 1 . (3.38)

Using (3.15) and (3.38), we get

xn+1 − x† (1 − ϕnχ) zn − x† ϕnγ Sx†

≤ max xn − x† ,
Q1 + γ Sx†

χ

≤ · · · ≤ max x1 − x† ,
Q1 + γ Sx†

χ
.

Thus, sequence {xn} is bounded. Hence, we assert {un}, {yn}, {zn} and {Szn} are
also bounded sequences.
Claim 2

2 − θ

θ
un − zn

2 xn − x† 2 xn+1 − x† 2 + ϕnQ4 .

From (3.16), (3.17) and Lemma 3.8, we can immediately get

xn+1 − x† 2 zn − x† 2 + ϕnQ3

xn − x† 2 + ϕnQ4 − 2 − θ

θ
un − zn

2 ,

where Q4 is defined in the Claim 2 of Theorem 3.1.

Claim 3

xn+1−x† 2 ≤ (1−ϕnχ) xn −x† 2+ϕnχ
2γ

χ
Sx†, x† − xn+1 + 3Qτn

ϕnχ
xn − xn−1 .

Combining (3.18), (3.19), (3.37), one obtains

xn+1 − x† 2 ≤ (1 − ϕnχ) xn − x† 2 + 2ϕnγ Sx†, x† − xn+1

+τn xn − xn−1 (2 xn − x† τ xn − xn−1 )

≤ (1 − ϕnχ) xn − x† 2 + ϕnχ
2γ

χ
Sx†, x† − xn+1 + 3Qτn

ϕnχ
xn − xn−1 ,

where Q := supn∈N xn − x† , τ xn − xn−1 > 0.

Claim 4 xn − x† 2 converges to zero. As proved in Claim 4 of Theorem 3.1, from
Claim 2 and θ ∈ (0, 2), one has

2 − θ

θ
unk

− znk

2 ≤ lim sup
k→∞

xnk
− x† 2 xnk+1 − x† 2 + ϕnk

Q4 ≤ 0 .
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Thus, we get limk→∞ znk
− unk

0. This together with Lemma 3.8 gives
that limk→∞ ynk

− unk
0. The rest of the proof can refer to the Claim 4 of

Theorem 3.1. We leave it to readers to verify. The proof of the theorem is now
complete.

By setting S(x) = x − f (x) in Theorem 3.2 and choosing γ = 1, we have the
following result.

Corollary 3.2 Suppose that mapping M : H → H is LM -Lipschitz continu-
ous pseudomonotone on H and sequentially weakly continuous on C, and mapping
f : H → H is ρ-contraction with ρ ∈ [0, √5 − 2). Take τ > 0, δ > 0,
ζ ∈ (0, 1), φ ∈ (0, 1) and θ ∈ (0, 2). Assume that the positive sequence {εn} satisfies
limn→∞ εn

ϕn
= 0, where {ϕn} ⊂ (0, 1) such that limn→∞ ϕn = 0 and ∞

n=1 ϕn = ∞.
Let x0, x1 ∈ H be two arbitrary initial points and iterative sequence {xn} be created
by the following ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn + τn(xn − xn−1) ,

yn = PC(un − ϑnMun) ,

zn = un − θχncn ,

xn+1 = (1 − ϕn)zn + ϕnf (zn) ,

(3.39)

where {τn}, {ϑn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively. Then
the iterative sequence {xn} generated by (3.39) converges to x† ∈ Ω in norm, where
x† = PΩ f x† .

Remark 3.3 Compared with some recent approaches presented in [22, 28–30], the
stated Algorithm (3.39) has the following advantages. (i) If the inertial parameter
τn = 0 in Algorithm (3.39), then it is similar to the viscosity projection-type algo-
rithm 3.2 proposed by Gibali, Thong and Tuan [28]. (ii) Note that the suggested
Algorithm (3.39) can update the step size adaptively by applying the Armijo-type
step size criterion, while Algorithm 1 introduced by Thong, Vinh and Cho [29] and
Algorithm 4.12 proposed by Gibali and Shehu [30] are both fixed step size iterative
schemes. (iii) Our Algorithm (3.39) obtains strong convergence in an infinite-
dimensional Hilbert space, whereas the Algorithm (IPCM) of Dong et al. [22] can
only achieve weak convergence. (iv) The methods offered in [22, 28–30] are used
to solve monotone variational inequality problems, while the recommended Algo-
rithm (3.39) can solve pseudomonotone variational inequalities. It is known that the
class of pseudomonotone mappings covers the class of monotone mappings, and thus
our algorithm is more applicable. Therefore, the stated Corollary 3.2 develops and
summarizes some recent results in the literature.

4 Numerical examples

In this section, we implement some examples that appear in finite- and infinite-
dimensional spaces to show the numerical performance of the proposed Algo-
rithms 3.1 and 3.2, and also to compare them with the Algorithm (1.6) suggested
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by Thong and Hieu [17]. We use the FOM Solver [31] to effectively calculate the
projections onto C and Tn. All the programs are implemented in MATLAB 2018a on
a personal computer. In our experiments, we consider only variational inequalities
governed by pseudomonotone operators which are not monotone.

Example 1 Let an operator M : Rm → R
m (m = 5, 10, 30, 50) be given by

M(x) = 1

x 2 + 1
arg min

y∈Rm

y 4

4
+ 1

2
x − y 2 .

We emphasize that the operator M is not monotone. However, the operator M

is Lipschitz continuous pseudomonotone (see [32]). The mapping S is defined by
S(x) = 1

2x. It can be easily verified that mapping S is 1
2 -Lipschitz continuous and

1
2 -strongly monotone. In this example, we choose the feasible set is a box constraint
C = [1, 3]m. Moreover, we estimate that LM ≈ 1.4 by using MATLAB. Our parame-
ters are set as follows. In all the algorithms, we set θ = 1.5, ϕn = 0.1

n+1 and γ = α

L2
S

.

Take τ = {0.1, 0.8}, εn = 1
(n+1)2

, δ = ζ = 0.9, φ = 0.6 in our Algorithms 3.1

and 3.2. For Algorithm (1.6), we choose the fixed step size ϑ = 0.5
LM

. Since we do
not know the exact solution to this problem, we use Dn xn − xn−1 to study the
numerical behavior of all the algorithms. Take initial values x0 = x1 are randomly
generated by rand(m,1) in MATLAB. The maximum iteration 50 as a common stop-
ping criterion. For the four different dimensions of the operator M , the numerical
results of all the algorithms are presented in Fig. 1.

Example 2 Consider a mapping S : R5 → R
5 of the form S(x) = Bx + q, where

B ∈ R
5×5 is a positive-definite and symmetric matrix and q ∈ R

5 with their entries
generated randomly in (−2, 2). It is clear that S is LS-Lipschitz continuous and α-
strongly monotone with LS = max{eig(B)} and α = min{eig(B)}, where eig(B)

represents all eigenvalues of B. Taking the feasible set C = {x ∈ R
5 : 1 ≤ xi ≤

3, i = 1, 2, . . . , 5}, we consider the following quadratic fractional programming
problem

min
x∈C

f (x) = xTQx + aTx + a0

bTx + b0
,

with

Q =

⎡

⎢⎢⎢⎢
⎣

5 −1 2 0 2
−1 6 −1 3 0
2 −1 3 0 1
0 3 0 5 0
2 0 1 0 4

⎤

⎥⎥⎥⎥
⎦

, a =

⎡

⎢⎢⎢⎢
⎣

1
2

−1
−2
1

⎤

⎥⎥⎥⎥
⎦

, b =

⎡

⎢⎢⎢⎢
⎣

1
0

−1
0
1

⎤

⎥⎥⎥⎥
⎦

, a0 = −2, b0 = 20 .

By a straightforward computation, we get

M(x) := ∇f (x) = bTx + b0 (2Qx + a) − b xTQx + aTx + a0

bTx + b0
2

.

The operator M is Lipschitz continuous on C with the constant L =
max M(x) x ∈ C}, see [33]. We get that LM ≈ 149 by using MATLAB. It is
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Fig. 1 Numerical results of all the algorithms in Example 1

not sure that whether M is monotone or not? However, M is pseudomontone because
f is pseudo-convex. The exact solution of the problem is x∗ = (1, 1, 1, 1, 1)T. In
this example, the Lipschitz constant is very large. If the parameters are selected as
in Example 1, our algorithms will oscillate due to the large step size. Therefore,
we adjust the parameters of the Armijo-type criterion in Algorithms 3.1 and 3.2
to δ = 0.003, ζ = 0.9 and φ = 0.1. Our other parameters are the same as in
Example 1. The maximum iteration of 500 as the stopping criterion. Figure 2 shows
the numerical performance of Dn xn − x† of all the algorithms under four
different initial values x0 = x1, which are randomly created by k×rand(5,1) in
MATLAB.

Example 3 Finally, we focus on an example that appears in an infinite-dimensional
Hilbert space H = L2[0, 1] with inner product x, y

1
0 x(t)y(t) dt and induced

norm x
1
0 |x(t)|2 dt 1/2

for all x, y ∈ H . Let r , R be two positive real

numbers such that R/(k + 1) < r/k < r < R for some k > 1. Take the feasible set
C = {x ∈ H x r} and the operator M : H → H given by

M(x) = (R x )x, ∀x ∈ H .
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Fig. 2 Numerical results of all the algorithms in Example 2

Note that M is not monotone. Taking a particular pair (x̃, ỹ) = (x̃, kx̃), one picks
x̃ ∈ C to satisfy R/(k + 1) < x < r/k. One can see that k x C. By a simple
operation, one gets

M(x̃) − M(ỹ), x̃ − ỹ (1 − k)2 x 2(R − (1 + k) x ) < 0 .

Hence, the operator M is not monotone on C. Next one shows that M is pseu-
domonotone. Indeed, one assumes that M(x), y − x 0 for all x, y ∈ C, that is,
(R x )x, y − x 0. From x < R, one gets that x, y − x 0. Therefore,

M(y), y − x (R y )y, y − x

≥ (R y )( y, y − x x, y − x )

= (R y ) y − x 2 ≥ 0 .

Let S : H → H be an operator defined by (Sx)(t) = 1
2x(t), t ∈ [0, 1]. It

is easy to see that S is 1
2 -strongly monotone and 1

2 -Lipschitz continuous. For the
experiment, we take R = 1.5, r = 1, k = 1.1. We know that the solution to the
problem is x†(t) = 0. Our parameters are the same as in Example 1. The maximum
iteration of 50 as the stopping criterion. Figure 3 displays the numerical behavior
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Fig. 3 Numerical results of all the algorithms in Example 3

of Dn xn(t) − x†(t) generated by all the algorithms with four starting points
x0(t) = x1(t).

Remark 4.4 We have the following observations for Examples 1–3.

– From Figs. 1, 2, and 3, we can see that the proposed Algorithms 3.1 and 3.2
are more efficient and faster than the Algorithm (1.6) introduced by Thong
and Hieu [17] under the appropriate parameters, and these results are indepen-
dent of the selection of initial values and the size of dimensions. Moreover,
our presented algorithms can work adaptively, while the fixed step iterative
Algorithm (1.6) depends on the prior information of the Lipschitz constant of
the involved mapping, which makes it invalid when the Lipschitz constant is
unknown (see Examples 4–6). Therefore, the iterative schemes suggested in this
paper are preferable in practical applications.

– From Example 3, it should be emphasized that the proposed Algorithms 3.1
and 3.2 can achieve higher accuracy than the Algorithm (1.6) under the same
stopping criterion. However, they need to spend more running time in an infinite-
dimensional space to achieve the same error accuracy, because they use an
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Armijo-type rule to automatically update the step size and this update criterion
requires that the value of operator M to be calculated multiple times in each iter-
ation. It will be interesting to embed a new simple step size used recently in [3,
4, 19, 26] into the algorithms proposed in this paper, and this is also one of our
future research topics.

5 Applications to optimal control problems

In this section, we use the derived algorithms (3.29) and (3.39) to solve the
variational inequality that occurs in the optimal control problem. Assume that
L2 ([0, T ],Rm) represents the square-integrable Hilbert space with inner product
p, q

T

0 p(t), q(t) dt and norm p 2 = √
p, p . The optimal control problem

is described as follows:

p∗(t) ∈ Argmin{g(p) | p ∈ V }, t ∈ [0, T ] , (5.1)

where V represents a set of feasible controls composed of m piecewise continuous
functions. Its form is expressed as follows:

V = p(t) ∈ L2 [0, T ],Rm : pi(t) ∈ p−
i , p+

i , i = 1, 2, . . . , m . (5.2)

In particular, the control p(t) may be a piecewise constant function (bang-bang
type). The terminal objective function has the form

g(p) = Φ(x(T )) , (5.3)

where Φ is a convex and differentiable defined on the attainability set.
Assume that the trajectory x(t) ∈ L2([0, T ]) satisfies the constraints of the linear

differential equation system:

d

dt
x(t) = Q(t)x(t) + W(t)p(t), 0 ≤ t ≤ T , x(0) = x0 , (5.4)

where Q(t) ∈ R
n×n, W(t) ∈ R

n×m are given continuous matrices for every t ∈
[0, T ]. By the solution of problem (5.1)–(5.4), we mean a control p∗(t) and a cor-
responding (optimal) trajectory x∗(t) such that its terminal value x∗(T ) minimizes
objective function (5.3). From the Pontryagin maximum principle, there exists a func-
tion s∗ ∈ L2([0, T ]) such that the triple (x∗, s∗, p∗) solves for a.e. t ∈ [0, T ] the
system

d

dt
x∗(t) = Q(t)x∗(t) + W(t)p∗(t), x∗(0) = x0 , (5.5)

d

dt
s∗(t) = −Q(t)Ts∗(t), s∗(T ) = ∇Φ x∗(T ) , (5.6)

0 ∈ W(t)Ts∗(t) + NV p∗(t) , (5.7)

where NV (p) is the normal cone to V at p defined by

NV (p) := ∅, if p /∈ V ;
{ι ∈ H ι, q − p 0, ∀q ∈ V }, if p ∈ V .
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Denoting Gp(t) := W(t)Ts(t), Khoroshilova [34] showed that Gp is the gradient
of the objective function g. Therefore, system (5.5)–(5.7) is reduced to the variational
inequality problem

Gp∗, q − p∗ ≥ 0 , ∀q ∈ V . (5.8)

Recently, there are many approaches to solve the optimal control problem, see,
for example, [34–37]. Note that our algorithms (3.29) and (3.39) guarantee strong
convergence and do not require the prior information of the Lipschitz constant of the
mapping. Furthermore, the addition of inertial terms makes them converge faster.

For the convenience of numerical computation, we discretize the continuous func-
tions. Take the mesh size h := T/N , where N is a natural number. We identify any
discretized control pN := (p0, p1, . . . , pN−1) with its piecewise constant extension:

pN(t) = pi , ∀t ∈ ti , ti+1) , ti = ih , i = 0, 1, . . . , N .

Moreover, we identify the discretized state xN := (x0, x1, . . . , xN) and co-state
sN := (s0, s1, . . . , sN ). They have the form of piecewise linear interpolation:

xN(t) = xi + t − ti

h
(xi+1 − xi) , ∀t ∈ ti , ti+1) , i = 0, 1, . . . , N − 1 ,

and

sN(t) = si + ti − t

h
(si−1 − si) , ∀t ∈ (ti−1, ti , i = N, N − 1, . . . , 1 .

We consider the classical Euler discretization method to solve the systems of
ODEs (5.5) and (5.6). Thus, the Euler discretization of the original system (5.1)–(5.4)
is given by

minimize ΦN xN, pN

subject to xN
i+1 = xN

i + h Q (ti) xN
i + W (ti) pN

i , xN(0) = x0 ,

sN
i = sN

i+1 + hQ (ti)
T sN

i+1, s(N) = ∇Φ(xN) ,

pN
i ∈ V .

It is well known that the Euler discretization has the error estimate O(h) [38]. This
indicates that the difference between the discretized solution pN(t) and the original
solution p∗(t) is proportional to the mesh size h. That is, there exists a constant
K > 0 such that pN − p∗ ≤ Kh.

Now, we provide some numerical examples to confirm the theoretical results of
the derived algorithms (3.29) and (3.39). Our parameters are set as follows:

N = 100, τ = 10−2, εn = 10−4

(n + 1)2
, δ = ζ = 0.5, φ = 0.4, θ = 1.5, ϕn = 10−4

n + 1
, f (x) = 0.1x .

The initial controls p0(t) = p1(t) are randomly generated in [−1, 1], and the
stopping criterion is pn+1 − pn ≤ 10−4.
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Example 4 (Control of a harmonic oscillator, see [39])

minimize x2(3π)

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π ] ,

x(0) = 0 ,

p(t) ∈ [−1, 1] .

The exact optimal control of Example 4 is known:

p∗(t) = 1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ;
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π ] .

Algorithms (3.29) and (3.39) obtained an approximate solution after 107 and
109 iterations, respectively. They take 0.070847 s and 0.043855 s, respectively.
Figure 4 shows the approximate optimal control and the corresponding trajectories
of Algorithm (3.29).

We now consider examples in which the terminal function is not linear.

Example 5 (Rocket car [35])

minimize
1

2
(x1(5))

2 + (x2(5))
2 ,

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = p(t), ∀t ∈ [0, 5] ,

x1(0) = 6, x2(0) = 1 ,

p(t) ∈ [−1, 1] .
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Fig. 4 Numerical results of Algorithm (3.29) in Example 4
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The exact optimal control of Example 5 is

p∗ = 1, if t ∈ (3.517, 5] ;
−1, if t ∈ (0, 3.517] .

After 256 iterations, Algorithm (3.29) takes 0.14696 s to obtain an approximate
solution. Moreover, Algorithm (3.39) takes 0.28532 s to achieve an approximate
solution after 352 iterations. The approximate optimal control and the corresponding
trajectories of Algorithm (3.39) are plotted in Fig. 5.

Example 6 (See [40])

minimize − x1(2) + (x2(2))
2 ,

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = p(t), ∀t ∈ [0, 2] ,

x1(0) = 0, x2(0) = 0 ,

p(t) ∈ [−1, 1] .
The exact optimal control of Example 6 is

p∗(t) = 1, if t ∈ [0, 1.2) ;
−1, if t ∈ (1.2, 2] .

Algorithm (3.29) takes 0.098119 s to obtain an approximate solution after 256
iterations. In addition, Algorithm (3.39) takes 0.17002 s to reach an approximate
solution after 346 iterations. Figure 6 gives the approximate optimal control and the
corresponding trajectories of Algorithm (3.29).

To compare the execution efficiency of the suggested algorithms (3.29) and (3.39),
we show the error estimates pn+1−pn of the proposed algorithms for Examples 4–
6 in Fig. 7.
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Fig. 5 Numerical results of Algorithm (3.39) in Example 5
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Fig. 6 Numerical results of Algorithm (3.29) in Example 6

Finally, we compare the proposed iterative schemes (3.29) and (3.39) with some
strongly convergent algorithms in the literature. Four algorithms used to compare
here are the Algorithm (3.39) (shortly, TLQ Alg. (3.39)) proposed by Tan, Liu and
Qin [4], the Algorithm 3.2 (THR Alg. 3.2) suggested by Thong, Hieu and Ras-
sias [26], the Algorithm 3.2 (TG Alg. 3.2) introduced by Thong and Gibali [27]
and the Algorithm 3.2 (GTT Alg. 3.2) presented by Gibali, Thong and Tuan [28].

The parameters are N = 100, f (x) = 0.1x, ϕn = 10−4

n+1 for all the algorithms;
δ = 1, ζ = 0.5, φ = 0.4, θ = 1.5 for TG Alg. 3.2, GTT Alg. 3.2 and the sug-

gested algorithms (3.29) and (3.39); τ = 10−2 and n = 10−4

(n+1)2
for TLQ Alg. (3.39),

THR Alg. 3.2 and the stated algorithms (3.29) and (3.39); μ = 0.1 and λ1 = 0.4 for
TLQ Alg. (3.39) and THR Alg. 3.2. The initial controls p0(t) = p1(t) are randomly
generated in [−1, 1]. The stopping criterion is pn+1 − pn ≤ 10−4 or reaching
the maximum of 1000 iterations. Table 1 compares the number of iterations and
execution time required for all the algorithms to reach the stopping criterion under
Examples 4–6.
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Fig. 7 Error estimates of the proposed algorithms in Examples 4–6
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Table 1 Comparison of the number of iterations and execution time of all the algorithms in Examples 4–6

Algotithms Example 4 Example 5 Example 6

Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. (3.29) 90 0.046053 91 0.0873 317 0.13714

Our Alg. (3.39) 101 0.051137 148 0.16716 392 0.21342

TLQ Alg. (3.39) 148 0.056682 1000 0.32776 1000 0.29783

THR Alg. 3.2 148 0.071484 1000 0.37165 1000 0.32059

TG Alg. 3.2 91 0.056392 91 0.12149 317 0.14152

GTT Alg. 3.2 101 0.058568 155 0.16431 456 0.24791

Remark 5.5 From Examples 4–6, we have the following observations.

(i) From Figs. 4, 5, and 6, it can be seen that the derived algorithms (3.29) and
(3.39) work well when the terminal function is linear or nonlinear. However,
it is noticed from Fig. 7 that they perform better when the terminal function is
linear than when it is nonlinear, that is, they require fewer iterations under the
same stopping criterion and have a more stable behavior.

(ii) As shown in Table 1, the proposed iterative schemes (3.29) and (3.39) have
better performance than some known results in the literature, i.e., they need
fewer iterations and execution time under the same stopping condition, and
these results are independent of the form of the terminal function. Thus, our
suggested algorithms are efficient and robust.

(iii) It is noted that the presented algorithms use an Armijo-type step size criterion,
which makes them work without knowing the prior knowledge of the Lipschitz
constants of the mapping involved. Indeed, in practical applications, the prior
information of the Lipschitz constant is not easy to obtain, and the fixed step
size algorithms suggested in [10, 17, 29, 30] will fail in this case. Therefore,
several self-adaptive methods proposed in this paper are more useful in reality.

6 Conclusions

In this paper, we proposed two new iterative methods for solving bilevel variational
inequality problems in a real Hilbert space when the involved mapping is pseu-
domonotone and Lipschitz continuous but the Lipschitz constant is unknown. The
advantage of the suggested algorithms is that only one projection onto the feasible set
needs to be performed. Strong convergence theorems of the stated iterative schemes
were proved without the prior knowledge of the Lipschitz constant of the involved
mapping. Several numerical experiments were performed to demonstrate the effi-
ciency of the proposed algorithms over the related one. Finally, the derived methods
were applied to solve optimal control problems and compared them with existing
algorithms.
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