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Abstract
In this paper, four self-adaptive iterative algorithms with inertial effects are introduced to
solve a split variational inclusion problem in real Hilbert spaces. One of the advantages of
the suggested algorithms is that they can work without knowing the prior information of the
operator norm. Strong convergence theorems of these algorithms are established under mild
and standard assumptions. As applications, the split feasibility problem and the split mini-
mization problem in real Hilbert spaces are studied. Finally, several preliminary numerical
experiments as well as an example in the field of compressed sensing are proposed to support
the advantages and efficiency of the suggested methods over some existing ones.
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1 Introduction

LetH1 andH2 be real Hilbert spaces with inner product 〈·, ·〉 and induced norm ‖ · ‖. In this
paper, we focus on the following split variational inclusion problem (in short, SVIP):

find x∗ ∈ H1 such that 0 ∈ F1(x
∗) and 0 ∈ F2(Ax

∗) , (SVIP)

where operators F1 : H1 → 2H 1 and F2 : H2 → 2H 2 are multi-valued maximal monotone,
and A : H1 → H2 is a bounded linear operator with its adjoint A∗. The solution set of
(SVIP) is denoted by � := {x∗ ∈ H1 : 0 ∈ F1(x∗) and 0 ∈ F2(Ax∗)}. The (SVIP) was first
introduced by Moudafi [1]. It is worth noting that (SVIP) is a unified framework for many
mathematical problems, including split minimization problem, split feasibility problems,
fixed-point problems, linear inverse problems and variational inclusion problems; see, e.g.,
[2–4]. This formalism is also at the core of the modeling of many inverse problems arising
for phase retrieval and other real-world problems; e.g., in sensor networks in computerized
tomography and data compression; see [5,6] and the references therein. Thus, implementable
and efficient solutions to this problem are of practical significance in many cases.

The goal of this paper is to build some fast and efficient iterative algorithms to solve
the (SVIP). In recent years, there has been tremendous interest in solving (SVIP) and many
researchers have constructed a large number ofmethods to solve the problem; see, e.g., [7–13]
and the references therein. Next, we first recall some known algorithms for solving (SVIP)
in the literature and then propose our methods. Byrne et al. [7, Algorithm 3.1] introduced the
following algorithm to find the solution for (SVIP): xn+1 = JλF1(xn − γ A∗(I − JλF2)Axn),
where JλF1 and JλF2 are the resolvent mappings of F1 and F2, respectively (see the definition
in Sect. 2) and I is the identity mapping. They proved that the iterative scheme converges
weakly to a solution of (SVIP) provided that � �= ∅ and stepsize γ ∈ (0, 2/‖A∗A‖). An
important method to solve the variational inclusion problem (i.e., find x∗ ∈ H1 such that
0 ∈ F1(x∗)) is the proximal point method (in short, PPM): xn+1 = JλF1(xn). In order to
speed up the convergence speed of PPM, Alvarez and Attouch [14] considered the following
iterative scheme: xn+1 = JλF1(xn + ϑn(xn − xn−1)), where F1 is a maximal monotone
operator, λ > 0 and ϑn ∈ [0, 1). This iterative scheme is now called the inertial proximal
point method (in short, IPPM). They proved that the iterative sequence generated by IPPM
converges weakly to a zero of F1 under the condition that

∑∞
n=1 ϑn‖xn − xn−1‖2 < ∞. It

should be noted that the inertial is induced by the term ϑn(xn − xn−1) and it can be regarded
as a procedure of speeding up the convergence properties; see [15,16]. Recently, the idea of
the inertial has been widely studied by many scholars in the optimization community as a
technology to build fast iterative algorithms; see, e.g., [17–22] and the references therein.
Inspired by themethod proposed byByrne et al. [7], the inertialmethod [14] and the projection
and contraction method [23], Chuang [17] introduced the following hybrid inertial proximal
algorithm to solve the (SVIP):

⎧
⎪⎨

⎪⎩

un = xn + ϑn(xn − xn−1) ,

qn = Jλn F1 [un − γn A
∗(I − Jλn F2)Aun] ,

xn+1 = Jλn F1(un − μncn) ,

(1.1)

where λn > 0, {ϑn} is a sequence in [0, ϑ] ⊂ [0, 1) satisfying ∑∞
n=1 ϑn‖xn − xn−1‖2 < ∞,

sequences {μn} and {cn} are defined in (3.3), and {γn} is a real sequence in [γ, δ/‖A‖2] ⊂
(0,∞) satisfying

γn‖A∗(I − JλF2)Aun − A∗(I − JλF2)Aqn‖ ≤ δ‖un − qn‖, 0 < δ < 1 .
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Chuang proved that the iterative sequence generated by (1.1) converges weakly to a solution
of (SVIP). Later, Majee and Nahak [18] revised the way of calculating xn+1 in the third step
of Algorithm (1.1). More precisely, they used xn+1 = un − κμncn to calculate the value
of xn+1, where κ ∈ (0, 2). It is worth noting that this method does not need to evaluate the
resolvent mapping of F1 again. They also established the weak convergence of the suggested
method under some suitable conditions.

Note that the methods suggested in [7,17,18] all achieve weak convergence in infinite-
dimensional spaces. Examples in CT reconstruction and machine learning tell us that strong
convergence is preferable to the weak convergence in an infinite-dimensional space. There-
fore, a natural question is how to modify the method proposed by Byrne et al. [7, Algorithm
3.1] such that it can achieve the strong convergence in infinite-dimensional spaces. In fact,
in the past few years, many scholars have presented various iterative schemes with strong
convergence to solve the split variational inclusion problem in real Hilbert spaces; see, e.g.,
[7,8,10,24–26]. Byrne et al. [7, Algorithm 4.4] used the Halpern method to guarantee the
strong convergence of the proposed algorithm. It is known that Halpern-type methods use
the initial point x0 in each iteration, which results in slow convergence. Kazmi and Rizvi [8]
applied the viscosity-type method to accelerate the convergence speed of Byrne et al.’s algo-
rithm [7, Algorithm 4.4] and obtained the strong convergence of the suggested method.
Sitthithakerngkiet et al. [10] combined the viscosity method and the hybrid steepest descent
method to assure the strong convergence of the offered algorithm. Recently, based on the
inertial idea, Byrne et al.’s method [7], Majee and Nahak’s method [18], Mann method and
viscosity method, Thong et al. [24], Long et al. [25] and Anh et al. [26] presented several
new inertial strongly convergent algorithms and their numerical experiments show that the
new iterative schemes are efficient and easy to implement.

On the other hand, the strongly convergent algorithms mentioned above share a common
feature, that is, their step size needs to know the prior information of the operator (matrix)
norm ‖A‖ in advance. It may be difficult to estimate ‖A‖ in general and thus affecting the
implementation of the fixed step size algorithms. To overcome this shortcoming, the construc-
tion of self-adaptive step size algorithms has aroused numerous interest among researchers.
López et al. [27] introduced a new relaxation algorithm whose iterative process is as follows:
xn+1 = PC (xn − γn A∗(I − PQ)Axn), where the step size γn is computed as

γn = ϕn
1
2‖(I − PQ)Ax‖2

‖A∗(I − PQ)Ax‖2 , 0 < ϕn < 4, inf ϕn(4 − ϕn) > 0 .

PC and PQ stand for the orthogonal projections on the closed convex sets C and Q, respec-
tively. Recently, there are many algorithms that do not require the prior information of the
operator (matrix) norm to solve (SVIP) and other problems; see, e.g., [28–33].

Motivated and stimulated by the above work, in this paper, we propose four self-adaptive
inertial algorithms with strong convergence to solve the split variational inclusion problem
(SVIP) in real Hilbert spaces. The advantages of the suggested iterative algorithms are that (1)
the prior information of the operator (matrix) norm is not required, (2) the strong convergence
theorems of the suggested algorithms are established under some weaker conditions, and
(3) the inertial term is embedded to accelerate the convergence speed of the algorithms.
Furthermore,we also give several theoretical applications of the proposed algorithms. Finally,
somenumerical experiments are provided to show the advantages of the stated algorithmsover
the previously existing ones. Our approaches obtained in this paper improve and summarize
some results in the literature [7,17,18,24–26,28,34].
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The rest of the paper is organized as follows. Some essential definitions and technical
lemmas that need to be used are given in the next section. In Sect. 3, we propose several
algorithms and analyze their convergence. Section 4 introduces some theoretical applications
of the proposed methods. Some numerical experiments to verify our theoretical results are
presented in Sect. 5. Finally, the paper ends with a brief summary in Sect. 6, the last section.

2 Preliminaries

Let C be a closed and convex nonempty subset in a real Hilbert space H . The weak con-
vergence and strong convergence of {xn}∞n=1 to x are represented by xn⇀x and xn → x ,
respectively. For each x, y, z ∈ H , we have the following basic facts:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖αx+λy+κz‖2 = α‖x‖2+λ‖y‖2+κ‖z‖2−αλ‖x− y‖2−ακ‖x− z‖2−λκ‖y− z‖2,

where α, λ, κ ∈ [0, 1] with α + λ + κ = 1.

Let T : H → H be a mapping with its fixed point set Fix(T ) = {x : T x = x} �= ∅.
Recall that a mapping T is said to be:

(1) firmly nonexpansive if

‖T x − T y‖2 ≤ 〈T x − T y, x − y〉, ∀x, y ∈ H ,

or equivalently,

‖T x − T y‖2 ≤ ‖x − y‖2 − ‖(I − T )x − (I − T )y‖2, ∀x, y ∈ H .

(2) nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ H .

Recall that a multi-valued mapping F : H → 2H with domain Dom(F) := {x ∈ H :
Fx �= ∅} is said to be (i) monotone if, for all x, y ∈ H , u ∈ Fx and v ∈ Fy indicates that
〈u−v, x− y〉 ≥ 0; (ii) maximal monotone if it is monotone and if, for any (x, u) ∈ H ×H ,
〈u − v, x − y〉 ≥ 0 for every (y, v) ∈ Graph(F) (the graph of mapping F) indicates that
u ∈ Fx . Let mapping F : H → 2H be set-valued maximal monotone. Then, for ∀x ∈ H
and γ > 0, the resolvent mapping Jγ F : H → H associated with F is represented as
Jγ F (x) = (I + γ F)−1(x), where I stands for the identity operator on H .

For every point x ∈ H , there exists a unique nearest point in C , denoted by PC (x),
such that PC (x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric or the nearest point
projection of H onto C . The two projection formulas given next will be used in the sequel
(see Sect. 5).

(1) The projection of x onto a half-space Hu,v = {x : 〈u, x〉 ≤ v} is computed by

PHu,v (x) = x − max
{[〈u, x〉 − v]/‖u‖2, 0}u .

(2) The projection of x onto a ball B[p, q] = {x : ‖x − p‖ ≤ q} is computed by

PB[p,q](x) = p + q

max{‖x − p‖, q} (x − p) .

The following lemmas are very helpful for the convergence analysis of our algorithms.

Lemma 2.1 ([35,36]) Assume that mapping F : H → 2H is set-valued maximal monotone
and λ > 0. Then the following statements hold:
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(1) JλF is a single-valued and firmly nonexpansive mapping.
(2) Dom(JλF ) = H and Fix(JλF ) = F−1(0) = {x ∈ Dom(F) : 0 ∈ Fx}.
(3) (I − JλF ) is a firmly nonexpansive mapping.
(4) Suppose that F−1(0) �= ∅. Then, 〈x − JλF x, JλF x − z〉 ≥ 0 for all x ∈ H , z ∈ F−1(0).

Lemma 2.2 Assume that H1 and H2 are real Hilbert spaces, and A : H1 → H2 is a
linear operator with its adjoint A∗. Let mapping F : H2 → 2H 2 be set-valued maximal
monotone and let JλF be a resolvent mapping of F. For all x ∈ H1, let T : H1 → H1 and
V : H1 → H1 be defined as T x := A∗(I − JλF )Ax and V x := x − γn A∗(I − JλF )Ax,
respectively. Let {γn} be a sequence of positive real numbers, L = ‖A‖2 and λ > 0. Then,
for any x, y ∈ H1 and p ∈ A−1(Fix(JλF )), the following statements hold:

(1) ‖(I − JλF )Ax − (I − JλF )Ay‖2 ≤ 〈T x − T y, x − y〉.
(2) ‖A∗(I − JλF )Ax − A∗(I − JλF )Ay‖ ≤ ‖A‖2‖x − y‖.
(3) ‖V x − p‖2 ≤ ‖x − p‖2 − γn(2 − γn L)‖(I − JλF )Ax‖2.
Proof From the fact that (I − JλF ) is a firmly nonexpansive mapping (Lemma 2.1 (3)), one
has

〈T x − T y, x − y〉 = 〈
A∗(I − JλF )Ax − A∗(I − JλF )Ay, x − y

〉

= 〈(I − JλF )Ax − (I − JλF )Ay, Ax − Ay〉
≥ ‖(I − JλF )Ax − (I − JλF )Ay‖2, ∀x, y ∈ H1 .

Moreover, we have

‖A∗(I − JλF )Ax − A∗(I − JλF )Ay‖2 ≤ ‖A‖2 · ‖(I − JλF )Ax − (I − JλF )Ay‖2
≤ ‖A‖2 · ‖Ax − Ay‖2
≤ ‖A‖4 · ‖x − y‖2, ∀x, y ∈ H1 .

Thus, ‖A∗(I − JλF )Ax− A∗(I − JλF )Ay‖ ≤ ‖A‖2‖x− y‖. Finally, we prove that statement
(3) is valid. Indeed, since p ∈ A−1(Fix(JλF )), one has Ap ∈ Fix(JλF ) and thus A∗(I −
JλF )Ap = 0. From statement (1), we have

〈
A∗(I − JλF )Ax − A∗(I − JλF )Ap, x − p

〉 ≥ ‖(I − JλF )Ax − (I − JλF )Ap‖2 ,

which yields 〈A∗(I − JλF )Ax, x − p〉 ≥ ‖Ax−JλF Ax‖2. This togetherwithLemma2.1 (1)
obtains

‖V x − p‖2 = ‖x − γn A
∗(I − JλF )Ax − p‖2

= ‖x − p‖2 + ‖γn A∗(I − JλF )Ax‖2 − 2γn
〈
x − p, A∗(I − JλF )Ax

〉

≤ ‖x − p‖2 + γ 2
n ‖A‖2‖(I − JλF )Ax‖2 − 2γn‖(I − JλF )Ax‖2

= ‖x − p‖2 − γn(2 − γn L)‖(I − JλF )Ax‖2 .

This completes the proof of the lemma. ��
Lemma 2.3 ([37]) Assume that H1 and H2 are real Hilbert spaces, and A : H1 → H2

is a linear operator with its adjoint A∗. Let F1 : H1 → 2H 1 and F2 : H2 → 2H 2 be
two set-valued maximal monotone mappings. Let JλF1 and JλF2 be the resolvent mapping
of F1 and F2, respectively. Suppose that the solution set of the problem (SVIP) is non-
empty and λ > 0, γ > 0. Then, for any z ∈ H1, z is a solution of (SVIP) if and only if
JλF1(z − γ A∗(I − JλF2)Az) = z.
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Lemma 2.4 ([38]) Let {ϒn} be a sequence of nonnegative real numbers, {ζn} be a sequence
of real numbers in (0, 1) with

∑∞
n=1 ζn = ∞, and {n} be a sequence of real numbers.

Assume that

ϒn+1 ≤ (1 − ζn)ϒn + ζnn, ∀n ≥ 1 .

If lim supk→∞ nk ≤ 0 for every subsequence
{
ϒnk

}
of {ϒn} satisfying lim infk→∞ (ϒnk+1−

ϒnk ) ≥ 0, then limn→∞ ϒn = 0.

3 Main Results

In this section, we propose four self-adaptive inertial algorithms to solve the split variational
inclusion problem (SVIP). The advantage of our algorithms is that they do not require the
prior information of the operator norm. Before introducing our algorithms, we assume that
the following conditions are satisfied.

(C1) The solution set of problem (SVIP) is nonempty, i.e., � �= ∅.
(C2) Assume that H1 and H2 are real Hilbert spaces, and A : H1 → H2 is a bounded

linear operator with its adjoint A∗. Let F1 : H1 → H1 and F2 : H2 → H2 be two
set-valued maximal monotone mappings.

(C3) Let {�n} be a positive sequence such that limn→∞ �n
σn

= 0, where {σn} ⊂ (0, 1)
satisfies limn→∞ σn = 0 and

∑∞
n=1 σn = ∞.

(C4) The mapping f : H1 → H1 is ρ-contractive with constant ρ ∈ [0, 1).

3.1 The Algorithm 3.1

In this subsection, inspired by the inertial method, Byrne et al.’s method [7], the projection
and contraction method and the viscosity-type method, we introduce a self-adaptive inertial
projection and contractionmethod to solve the (SVIP). The details of the first iterative scheme
are described in Algorithm 3.1.

Remark 3.1 From Algorithm 3.1, we have the following observations.

(i) It follows from (3.1) that

lim
n→∞

ϑn

σn
‖xn − xn−1‖ = 0 .

Indeed, we have ϑn‖xn − xn−1‖ ≤ �n for all n, which together with limn→∞ �n
σn

= 0
implies that

lim
n→∞

ϑn

σn
‖xn − xn−1‖ ≤ lim

n→∞
�n

σn
= 0 .

(ii) If un = qn or cn = 0, then qn ∈ �. Indeed, from the definition of cn , one obtains

‖cn‖ ≥ ‖un − qn‖ − γn‖A∗(I − JλF2)Aun − A∗(I − JλF2)Aqn‖
≥ (1 − δ)‖un − qn‖ .

It can be easily proved that ‖cn‖ ≤ (1 + δ)‖un − qn‖. Therefore,
(1 − δ)‖un − qn‖ ≤ ‖cn‖ ≤ (1 + δ)‖un − qn‖ ,
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Algorithm 3.1 The inertial viscosity-type projection and contraction algorithm for (SVIP)
Initialization: Set λ > 0, ϑ > 0, ζ > 0, χ ∈ (0, 1), δ ∈ (0, 1), κ ∈ (0, 2) and let x0, x1 ∈ H .
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set un = xn + ϑn(xn − xn−1), where

ϑn =
⎧
⎨

⎩
min

{
�n

‖xn − xn−1‖ , ϑ

}

, if xn �= xn−1;
ϑ, otherwise.

(3.1)

Step2.Computeqn = JλF1 [un−γn A∗(I−JλF2 )Aun ], whereγn = ζχrn and rn is the smallest nonnegative
integer such that

γn‖A∗(I − JλF2 )Aun − A∗(I − JλF2 )Aqn‖ ≤ δ‖un − qn‖ . (3.2)

If un = qn , then stop and qn is a solution of the problem (SVIP). Otherwise, go to Step 3.
Step 3. Compute gn = un − κμncn , where

cn = un − qn − γn [A∗(I − JλF2 )Aun − A∗(I − JλF2 )Aqn ] ,
μn = 〈un − qn , cn〉

‖cn‖2 .
(3.3)

Step 4. Compute xn+1 = σn f (xn) + (1 − σn)gn .
Set n := n + 1 and go to Step 1.

and thus un = qn iff cn = 0. Hence, if un = qn or cn = 0, then qn = JλF1 [qn−γn A∗(I −
JλF2)Aqn]. This implies that qn ∈ � by means of Lemma 2.3.

The following lemmas are quite helpful to analyze the convergence of our algorithms.

Lemma 3.1 The Armijo-like search rule (3.2) is well defined and min
{
ζ,

δχ
L

} ≤ γn ≤ ζ .

Proof Indeed, using Lemma 2.2 (2), one sees that

‖A∗(I − JλF2)Aun − A∗(I − JλF2)Aqn‖ ≤ L‖un − qn‖ ,

where L = ‖A‖2. Obviously, (3.2) holds for all 0 < γn ≤ δL−1. On the other hand, it is
easy to see that γn ≤ ζ . If γn = ζ , then this lemma is proved. Otherwise, if γn < ζ , then
inequality (3.2) will be violated when γ = γnχ

−1, which indicates that γnχ
−1 > δL−1.

Hence γn ≥ min{ζ,
δχ
L }. ��

Lemma 3.2 Suppose that Conditions (C1)–(C3) hold. Let {un}, {qn} and {gn} be three
sequences created by Algorithm 3.1. Then, for all p ∈ �,

‖gn − p‖2 ≤ ‖un − p‖2 − 2 − κ

κ
‖gn − un‖2 ,

and

‖un − qn‖2 ≤ (1 + δ)2

(1 − δ)2κ2 ‖gn − un‖2 .

Proof Indeed, from the definitions of gn and μn , we get

‖gn − p‖2 = ‖un − p‖2 − 2κμn 〈un − p, cn〉 + κ2μ2
n‖cn‖2

= ‖un − p‖2 − 2κμn 〈un − p, cn〉 + κ2μn 〈un − qn, cn〉 .
(3.4)
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It is easy to see the following equation

〈un − p, cn〉 = 〈un − qn, cn〉 + 〈qn − p, cn〉 . (3.5)

Next, we prove that

〈qn − p, cn〉 ≥ 0 . (3.6)

From the definition of qn and Lemma 2.1 (4), we obtain

〈un − γn A
∗(I − JλF2)Aun − qn, qn − p〉 ≥ 0 . (3.7)

It follows from p ∈ � that Ap ∈ F−1
2 (0). Using Lemma 2.1 (2), one sees that Ap ∈

Fix(JλF2). This indicates that A
∗ (I − JλF2)Ap = 0. By Lemma 2.2 (1), one has

〈
γn

(
A∗(I − JλF2)Aqn − A∗(I − JλF2)Ap

)
, qn − p

〉 ≥ 0 ,

which yields 〈qn − p, γn A∗(I − JλF2)Aqn〉 ≥ 0. This together with Eq. (3.7) gets
〈
qn − p, un − qn − γn[A∗(I − JλF2)Aun − A∗(I − JλF2)Aqn]

〉 ≥ 0 .

Thus, (3.6) was proved by using the definition of cn . Combining (3.4), (3.5) and (3.6), we
obtain

‖gn − p‖2 ≤ ‖un − p‖2 − (2κ − κ2)μn 〈un − qn, cn〉
= ‖un − p‖2 − 2 − κ

κ
‖gn − un‖2 .

On the other hand, by using (3.2), we have

〈un − qn, cn〉 = 〈
un − qn, un − qn − γn[A∗(I − JλF2)Aun − A∗(I − JλF2)Aqn]

〉

= ‖un − qn‖2 − γn
〈
un − qn, A

∗(I − JλF2)Aun − A∗(I − JλF2)Aqn
〉

≥ ‖un − qn‖2 − γn‖un − qn‖‖A∗(I − JλF2)Aun − A∗(I − JλF2)Aqn‖
≥ (1 − δ)‖un − qn‖2 .

From Remark 3.1 (ii), one obtains ‖cn‖2 ≤ (1+ δ)2‖un − qn‖2. According to the definition
of μn , we have

μn = 〈un − qn, cn〉
‖cn‖2 ≥ 1 − δ

(1 + δ)2
.

By the definitions of gn and μn , we get

‖un − qn‖2 ≤ 1

1 − δ
〈un − qn, cn〉 ≤ 1

(1 − δ)μnκ2 ‖gn − un‖2 .

Therefore, we conclude that

‖un − qn‖2 ≤ (1 + δ)2

(1 − δ)2κ2 ‖gn − un‖2 .

This completes the proof of the lemma. ��
Lemma 3.3 Assume that the sequences {un} and {qn} are formed by Algorithm 3.1. If

{
unk

}

converges weakly to p and limn→∞ ‖un − qn‖ = 0, then p ∈ �.
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Proof Let us assume that p ∈ �. Then p ∈ F−1
1 (0), and thus p ∈ Fix(JλF1) by means of

Lemma 2.1 (2). Using the definition of qn and Lemma 2.1 (4), we obtain

〈un − γn A
∗(I − JλF2)Aun − qn, qn − p〉 ≥ 0 . (3.8)

It follows from p ∈ � that Ap ∈ F−1
2 (0). Hence Ap ∈ Fix(JλF2). This indicates that

A∗(I − JλF2)Ap = 0. From Lemma 2.2 (1), one infers that

〈A∗(I − JλF2)Aqn − A∗(I − JλF2)Ap, qn − p〉 ≥ ‖(I − JλF2)Aqn‖2 . (3.9)

Combining (3.8), (3.9) and Lemma 2.2 (2), we have

γn‖Aqn − JλF2 Aqn‖2 ≤ 〈
γn A

∗(I − JλF2)Aqn, qn − p
〉

≤ 〈
un − qn − γn A

∗(I − JλF2)Aun + γn A
∗(I − JλF2)Aqn, qn − p

〉

≤ ‖un − qn − γn A
∗(I − JλF2)Aun + γn A

∗(I − JλF2)Aqn‖‖qn − p‖
≤ (‖un − qn‖ + γn‖A∗(I − JλF2)Aun − A∗(I − JλF2)Aqn‖

)‖qn − p‖
≤ (

1 + γn‖A‖2)‖un − qn‖‖qn − p‖ .

Since γn > 0 and limn→∞ ‖un − qn‖ = 0, we find that limn→∞ ‖Aqn − JλF2 Aqn‖ = 0.
Moreover, by Lemma 2.1 (1), one observes that

‖Aun − JλF2 Aun‖ ≤ ‖Aun − Aqn − (JλF2 Aun − JλF2 Aqn)‖ + ‖Aqn − JλF2 Aqn‖
≤ 2‖A‖‖un − qn‖ + ‖Aqn − JλF2 Aqn‖ .

This indicates that

lim
n→∞ ‖Aun − JλF2 Aun‖ = 0 . (3.10)

From Lemma 2.1 (1) and the definition of qn , we get

‖qn − JλF1un‖ = ‖JλF1(un − γn A
∗(I − JλF2)Aun) − JλF1un‖

≤ γn‖A∗‖‖(I − JλF2)Aun‖ ,

which togetherwith (3.10) gives that limn→∞ ‖qn−JλF1un‖ = 0. From limn→∞ ‖un−qn‖ =
0, one obtains limn→∞ ‖un − JλF1un‖ = 0. This combining with Lemma 2.1 (1) and unk⇀p
yields p ∈ Fix(JλF1). In view of the fact that A is a linear bounded operator and unk⇀p,
we get Aunk⇀Ap. Using (3.10) and Lemma 2.1 (1), we obtain Ap ∈ Fix(JλF2). Thus, we
deduce that p ∈ �. The proof is completed. ��
Remark 3.2 It is worth noting that the proof of Lemma 3.3 does not use the definition of
Armijo stepsize (3.2).

We are now in a position to prove the strong convergence result of Algorithm 3.1.

Theorem 3.1 Suppose that Conditions (C1)–(C4) hold. Then the sequence {xn} formed by
Algorithm 3.1 converges to p ∈ � in norm, where p = P� ◦ f (p).

Proof For simplicity, we divide the proof into four claims.

Claim 1. {xn} is bounded. Indeed, it follows from Lemma 3.2 and κ ∈ (0, 2) that

‖gn − p‖ ≤ ‖un − p‖, ∀n ≥ 1 . (3.11)
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By the definition of un , we can write

‖un − p‖ ≤ ‖xn − p‖ + σn · ϑn

σn
‖xn − xn−1‖ . (3.12)

According to Remark 3.1 (i), one has ϑn
σn

‖xn − xn−1‖ → 0. Therefore, there exists a constant
M1 > 0 such that

ϑn

σn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1 . (3.13)

Combining (3.11), (3.12) and (3.13), we obtain

‖gn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖ + σnM1, ∀n ≥ 1 . (3.14)

Thus,

‖xn+1 − p‖ ≤ σn‖ f (xn) − f (p)‖ + σn‖ f (p) − p‖ + (1 − σn)‖gn − p‖
≤ [1 − σn(1 − ρ)]‖xn − p‖ + σn(1 − ρ)

‖ f (p) − p‖ + M1

1 − ρ

≤ max
{
‖xn − p‖, ‖ f (p) − p‖ + M1

1 − ρ

}

≤ · · · ≤ max
{
‖x0 − p‖, ‖ f (p) − p‖ + M1

1 − ρ

}
.

This implies that sequence {xn} is bounded. So, sequences { f (xn)}, {un}, {qn} and {gn} are
also bounded.

Claim 2.

(1 − σn)
2 − κ

κ
‖un − gn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + σnM4

for some M4 > 0. Indeed, from (3.14), one sees that

‖un − p‖2 ≤ (‖xn − p‖ + σnM1
)2

= ‖xn − p‖2 + σn
(
2M1‖xn − p‖ + σnM

2
1

)

≤ ‖xn − p‖2 + σnM2

(3.15)

for some M2 > 0. Combining Lemma 3.2 and (3.15), we get

‖xn+1 − p‖2 ≤ σn‖ f (xn) − p‖2 + (1 − σn)‖gn − p‖2
≤ σn(‖ f (xn) − f (p)‖ + ‖ f (p) − p‖)2 + (1 − σn)‖gn − p‖2
≤ σn(‖xn − p‖ + ‖ f (p) − p‖)2 + (1 − σn)‖gn − p‖2
= σn‖xn − p‖2 + (1 − σn)‖gn − p‖2

+ σn(2‖xn − p‖ · ‖ f (p) − p‖ + ‖ f (p) − p‖2)
≤ σn‖xn − p‖2 + (1 − σn)‖gn − p‖2 + σnM3

≤ ‖xn − p‖2 − (1 − σn)
2 − κ

κ
‖un − gn‖2 + σnM4 ,
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where M4 := M2 + M3. The desired result can be achieved by a simple conversion.

Claim 3.

‖xn+1 − p‖2 ≤ (1 − (1 − ρ)σn)‖xn − p‖2 + (1 − ρ)σn ·
[ 3M

1 − ρ
· ϑn

σn
‖xn − xn−1‖

+ 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

]

for some M > 0. Indeed, it follows from the definition of un that

‖un − p‖2 ≤ ‖xn − p‖2 + 2ϑn‖xn − p‖‖xn − xn−1‖ + ϑ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 3Mϑn‖xn − xn−1‖ ,
(3.16)

where M := supn∈N{‖xn − p‖, ϑ‖xn − xn−1‖} > 0. Using (3.14) and (3.16), we have

‖xn+1 − p‖2 = ‖σn( f (xn) − f (p)) + (1 − σn)(gn − p) + σn( f (p) − p)‖2
≤ ‖σn( f (xn) − f (p)) + (1 − σn)(gn − p)‖2 + 2σn〈 f (p) − p, xn+1 − p〉
≤ σn‖ f (xn) − f (p)‖2 + (1 − σn)‖gn − p‖2 + 2σn〈 f (p) − p, xn+1 − p〉
≤ σnρ‖xn − p‖2 + (1 − σn)‖un − p‖2 + 2σn〈 f (p) − p, xn+1 − p〉
≤ (1 − (1 − ρ)σn)‖xn − p‖2 + (1 − ρ)σn ·

[ 3M

1 − ρ
· ϑn

σn
‖xn − xn−1‖

+ 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

]
.

Claim 4. {‖xn − p‖2} converges to zero. Indeed, by Lemma 2.4, it suffices to show that
lim supk→∞〈 f (p) − p, xnk+1 − p〉 ≤ 0 for every subsequence

{‖xnk − p‖} of {‖xn − p‖}
satisfying lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0.

For this purpose, we assume that
{‖xnk − p‖} is a subsequence of {‖xn − p‖} such that

lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. Then,

lim inf
k→∞

(‖xnk+1 − p‖2 − ‖xnk − p‖2)

= lim inf
k→∞

[
(‖xnk+1 − p‖ − ‖xnk − p‖)(‖xnk+1 − p‖ + ‖xnk − p‖)] ≥ 0 .

From Claim 2, one sees that

(1 − σnk )
2 − κ

κ
‖unk − gnk‖2 ≤ lim sup

k→∞
[‖xnk − p‖2 − ‖xnk+1 − p‖2 + σnk M4

]

≤ 0 ,

which implies that

lim
k→∞ ‖gnk − unk‖ = 0 . (3.17)

This together with Lemma 3.2 finds that limk→∞ ‖qnk − unk‖ = 0. Moreover, using
Remark 3.1 (i) and Condition (C3), we have

‖xnk+1 − gnk‖ = σnk‖gnk − f (xnk )‖ → 0 , (3.18)

and

‖xnk − unk‖ = σnk · ϑnk

σnk
‖xnk − xnk−1‖ → 0 . (3.19)
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From (3.17), (3.18) and (3.19), we conclude that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − gnk‖ + ‖gnk − unk‖ + ‖unk − xnk‖ → 0 . (3.20)

Since {xnk } is bounded, there exists a subsequence {xnk j } of {xnk } such that xnk j ⇀z. Fur-
thermore,

lim sup
k→∞

〈 f (p) − p, xnk − p〉 = lim
j→∞〈 f (p) − p, xnk j − p〉 = 〈 f (p) − p, z − p〉 .(3.21)

We get unk⇀z since ‖xnk − unk‖ → 0. This together with limk→∞ ‖unk − qnk‖ = 0 and
Lemma 3.3 obtains that z ∈ �. From the definition of p and (3.21), we get

lim sup
k→∞

〈 f (p) − p, xnk − p〉 = 〈 f (p) − p, z − p〉 ≤ 0 . (3.22)

Combining (3.20) and (3.22), we obtain

lim sup
k→∞

〈 f (p) − p, xnk+1 − p〉 ≤ lim sup
k→∞

〈 f (p) − p, xnk − p〉 ≤ 0 . (3.23)

Thus, from Remark 3.1 (i), (3.23), Claim 3 and Lemma 2.4, we conclude that xn → p. That
is the desired result. ��

3.2 The Algorithm 3.2

In this subsection, we propose an inertial Mann-type projection and contraction algorithm
to solve (SVIP). Before proposing our iterative scheme, we first assume that the algorithm
satisfies conditions (C1)–(C3) and (C5) .

(C5) Assume that the real sequence {τn} ⊂ (0, 1) such that {τn} ⊂ (a, b) ⊂ (0, 1 − σn) for
some a > 0, b > 0.

The Algorithm 3.2 is of the form:

Algorithm 3.2 The inertial Mann-type projection and contraction algorithm for (SVIP)
Initialization: Set λ > 0, ϑ > 0, ζ > 0, χ ∈ (0, 1), δ ∈ (0, 1), κ ∈ (0, 2) and let x0, x1 ∈ H .
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un = xn + ϑn(xn − xn−1) ,

qn = JλF1 [un − γn A
∗(I − JλF2 )Aun ] ,

gn = un − κμncn ,

xn+1 = (1 − σn − τn)un + τngn ,

where {ϑn}, {γn} and {cn} are defined in (3.1), (3.2) and (3.3), respectively.

Theorem 3.2 Suppose that Conditions (C1)–(C3) and (C5) hold. Then the sequence {xn}
created by Algorithm 3.2 converges to p ∈ � in norm, where ‖p‖ = min{‖z‖ : z ∈ �}.
Proof We divide this proof into four steps.

Claim 1. The sequence {xn} is bounded. Indeed, thanks to Lemma 3.2, we have

‖gn − p‖ ≤ ‖un − p‖ . (3.24)
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By the definition of xn+1, one has

‖xn+1 − p‖ = ‖(1 − σn − τn)(un − p) + τn(gn − p) − σn p‖
≤ ‖(1 − σn − τn)(un − p) + τn(gn − p)‖ + σn‖p‖ .

(3.25)

It follows from (3.24) that

‖(1 − σn − τn)(un − p) + τn(gn − p)‖2
≤ (1 − σn − τn)

2‖un − p‖2 + 2(1 − σn − τn)τn‖gn − p‖‖un − p‖ + τ 2n ‖gn − p‖2
≤ (1 − σn − τn)

2‖un − p‖2 + 2(1 − σn − τn)τn‖un − p‖2 + τ 2n ‖un − p‖2
= (1 − σn)

2‖un − p‖2 ,

which yields

‖(1 − σn − τn)(un − p) + τn(gn − p)‖ ≤ (1 − σn)‖un − p‖ . (3.26)

Combining (3.14), (3.25) and (3.26), we deduce that

‖xn+1 − p‖ ≤ (1 − σn)‖un − p‖ + σn‖p‖
≤ (1 − σn)‖xn − p‖ + σn(‖p‖ + M1)

≤ max {‖xn − p‖, ‖p‖ + M1}
≤ · · · ≤ max {‖x0 − p‖, ‖p‖ + M1} .

That is, {xn} is bounded. So, the sequences {gn} and {un} are also bounded.

Claim 2.

τn
2 − κ

κ
‖un − gn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + σn

(‖p‖2 + M2
)
.

Indeed, using Lemma 3.2 and (3.15), we obtain

‖xn+1 − p‖2 ≤ (1 − σn − τn)‖un − p‖2 + τn‖gn − p‖2 + σn‖p‖2

≤ (1 − σn − τn)‖un − p‖2 + τn‖un − p‖2 − τn
2 − κ

κ
‖un − gn‖2 + σn‖p‖2

≤ ‖xn − p‖2 − τn
2 − κ

κ
‖un − gn‖2 + σn

(‖p‖2 + M2
)
.

The desired result can be achieved by a simple conversion.

Claim 3.

‖xn+1 − p‖2 ≤ (1 − σn)‖xn − p‖2 + σn

[
2τn‖un − gn‖‖xn+1 − p‖

+ 2〈p, p − xn+1〉 + 3Mϑn

σn
‖xn − xn−1‖

]
.

Setting tn = (1 − τn)un + τngn , one has

‖tn − un‖ = τn‖un − gn‖ . (3.27)

It follows from (3.24) that

‖tn − p‖ = ‖(1 − τn)(un − p) + τn(gn − p)‖
≤ (1 − τn)‖un − p‖ + τn‖un − p‖
= ‖un − p‖ .

(3.28)

123



   20 Page 14 of 34 Journal of Scientific Computing            (2021) 87:20 

From (3.16), (3.27) and (3.28), we have

‖xn+1 − p‖2 = ‖(1 − σn)(tn − p) − σn(un − tn) − σn p‖2
≤ (1 − σn)

2‖tn − p‖2 − 2σn〈un − tn + p, xn+1 − p〉
≤ (1 − σn)‖tn − p‖2 + 2σn‖un − tn‖‖xn+1 − p‖ + 2σn〈p, p − xn+1〉
≤ (1 − σn)‖xn − p‖2 + σn

[
2τn‖un − gn‖‖xn+1 − p‖

+ 2〈p, p − xn+1〉 + 3Mϑn

σn
‖xn − xn−1‖

]
.

Claim 4. The sequence {‖xn − p‖2} converges to zero. We assume that
{‖xnk − p‖} is a

subsequence of {‖xn − p‖} such that lim infk→∞(‖xnk+1− p‖−‖xnk − p‖) ≥ 0. ByClaim 2
and Condition (C5), we have

τnk
2 − κ

κ
‖unk − gnk‖2 ≤ lim sup

k→∞
[‖xnk − p‖2 − ‖xnk+1 − p‖2] + lim sup

k→∞
σnk

(‖p‖2 + M2
)

≤ 0 ,

which indicates that

lim
k→∞ ‖gnk − unk‖ = 0 . (3.29)

In view of Lemma 3.2, one observes that limk→∞ ‖qnk − unk‖ = 0. From (3.29) and the
boundedness of {xn}, we can further obtain

lim
k→∞ τnk‖unk − gnk‖‖xnk+1 − p‖ = 0 . (3.30)

Moreover, using (3.29), Condition (C5) and Remark 3.1 (i) , we have

‖xnk+1 − unk‖ = σnk‖unk‖ + τnk‖gnk − unk‖ → 0 ,

and

‖xnk − unk‖ = σnk · ϑnk

σnk
‖xnk − xnk−1‖ → 0 .

Thus, we conclude that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − unk‖ + ‖unk − xnk‖ → 0 . (3.31)

Since {xnk } is bounded, there exists a subsequence {xnk j } of {xnk } such that xnk j ⇀z. More-
over,

lim sup
k→∞

〈p, p − xnk 〉 = lim
j→∞〈p, p − xnk j 〉 = 〈p, p − z〉 . (3.32)

Since ‖xnk − unk‖ → 0, one has unk⇀z, which, together with limk→∞ ‖unk − qnk‖ = 0
and Lemma 3.3, gets that z ∈ �. From the definition of p and (3.32), we obtain

lim sup
k→∞

〈p, p − xnk 〉 = 〈p, p − z〉 ≤ 0 . (3.33)

Combining (3.31) and (3.33), we have

lim sup
k→∞

〈p, p − xnk+1〉 ≤ lim sup
k→∞

〈p, p − xnk 〉 ≤ 0 . (3.34)

Thus, fromRemark 3.1 (i), (3.30), (3.34), Claim 3 and Lemma 2.4, we conclude that xn → p.
The proof is completed. ��
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3.3 The Algorithm 3.3

In this subsection, an inertial Mann-type algorithm for solving (SVIP) will be given. It is
worth noting that this method uses a new step size update criterion that does not require any
line search process. More precisely, the approach is described as follows:

Algorithm 3.3 The self-adaptive inertial Mann-type algorithm for (SVIP)
Initialization: Set λ > 0, ϑ > 0, ϕn ∈ (0, 2) and let x0, x1 ∈ H .
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎨

⎪⎩

un = xn + ϑn(xn − xn−1) ,

gn = JλF1 [un − γn A
∗(I − JλF2 )Aun ] ,

xn+1 = (1 − σn − τn)un + τngn ,

where {ϑn} is defined in (3.1) and the stepsize γn is updated by the following:

γn =

⎧
⎪⎨

⎪⎩

ϕn‖(I − JλF2 )Aun‖2
‖A∗(I − JλF2 )Aun‖2 , if ‖A∗(I − JλF2 )Aun‖ �= 0;
0, otherwise.

(3.35)

The following two lemmas are very important for the convergence analysis of the algo-
rithms.

Lemma 3.4 The sequence {γn} formed by (3.35) is bounded.

Proof Indeed, if ‖A∗(I − JλF2)Aun‖ �= 0, then

inf

{
2‖(I − JλF2)Aun‖2

‖A∗(I − JλF2)Aun‖2
− γn

}

> 0 .

On the other hand, from the fact that A is bounded and linear, we can show that

ϕn‖(I − JλF2)Aun‖2
‖A∗(I − JλF2)Aun‖2

≥ ϕn‖(I − JλF2)Aun‖2
‖A‖2‖(I − JλF2)Aun‖2

= ϕn

‖A‖2 .

Therefore, sup γn < ∞ and thus {γn} is bounded. ��
Lemma 3.5 Suppose that Conditions (C1)–(C3) hold. Let the sequences {un} and {gn} be
made by Algorithm 3.3. Then

‖gn − p‖2 ≤ ‖un − p‖2 − γn(2 − ϕn)‖(I − JλF2)Aun‖2 .

Proof From Lemma 2.1 (1), Lemma 2.2 (3) and the definition of γn , we have

‖gn − p‖2 ≤ ‖un − γn A
∗(I − JλF2)Aun − p‖2

= ‖un − p‖2 + ‖γn A∗(I − JλF2)Aun‖2 − 2γn
〈
un − p, A∗(I − JλF2)Aun

〉

≤ ‖un − p‖2 + γ 2
n ‖A∗(I − JλF2)Aun‖2 − 2γn‖(I − JλF2)Aun‖2

= ‖un − p‖2 − γn
(
2‖(I − JλF2)Aun‖2 − γn‖A∗(I − JλF2)Aun‖2

)

= ‖un − p‖2 − γn(2 − ϕn)‖(I − JλF2)Aun‖2 .

The proof of the lemma is now complete. ��
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Theorem 3.3 Suppose that Conditions (C1)–(C3) and (C5) hold. Then the sequence {xn}
formed by Algorithm 3.3 converges to p ∈ � in norm, where ‖p‖ = min{‖z‖ : z ∈ �}.

Proof This proof is divided into four claims.

Claim 1. The sequence {xn} is bounded. Indeed, from Lemma 3.5 and ϕn ∈ (0, 2), we have

‖gn − p‖ ≤ ‖un − p‖, ∀n ≥ 1 . (3.36)

From (3.14), (3.25), (3.26) and (3.36), we get

‖xn+1 − p‖ ≤ (1 − σn)‖un − p‖ + σn‖p‖
≤ (1 − σn)‖xn − p‖ + σn(‖p‖ + M1)

≤ max {‖xn − p‖, ‖p‖ + M1}
≤ · · · ≤ max {‖x0 − p‖, ‖p‖ + M1} ,

where M1 is defined in Claim 1 of Theorem 3.1. Thus, {xn} is bounded. Consequently, {un}
and {gn} are also bounded.

Claim 2.

τnγn(2 − ϕn)‖(I − JλF2)Aun‖2 + τn(1 − σn − τn)‖un − gn‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + σn(‖p‖2 + M2) .

Indeed, from Lemma 3.5 and (3.15), we get

‖xn+1 − p‖2 = ‖(1 − σn − τn)(un − p) + τn(gn − p) + σn(−p)‖2
≤ (1 − σn − τn)‖un − p‖2 + τn‖gn − p‖2 + σn‖p‖2

− τn(1 − σn − τn)‖un − gn‖2
≤ ‖xn − p‖2 − τnγn(2 − ϕn)‖(I − JλF2)Aun‖2

+ σn(‖p‖2 + M2) − τn(1 − σn − τn)‖un − gn‖2 ,

wher M2 is defined in Claim 2 of Theorem 3.1. The desired result can be obtained by a simple
conversion.

Claim 3.

‖xn+1 − p‖2 ≤ (1 − σn)‖xn − p‖2 + σn

[
2τn‖un − gn‖‖xn+1 − p‖

+ 2〈p, p − xn+1〉 + 3Mϑn

σn
‖xn − xn−1‖

]
.

This result can be obtained by using the same facts as the Claim 3 of Theorem 3.2.

Claim 4. The sequence {‖xn − p‖2} converges to zero. We assume that
{‖xnk − p‖} is a

subsequence of {‖xn − p‖} such that lim infk→∞(‖xnk+1− p‖−‖xnk − p‖) ≥ 0. ByClaim 2
and Conditions (C3) and (C5) , we have

τnkγnk (2 − ϕnk )‖(I − JλF2)Aunk‖2 + τnk (1 − σnk − τnk )‖unk − gnk‖2
≤ lim sup

k→∞
[‖xnk − p‖2 − ‖xnk+1 − p‖2] + lim sup

k→∞
σnk

(‖p‖2 + M2
) ≤ 0 ,
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which implies that limk→∞ ‖(I − JλF2)Aunk‖ = 0 and limk→∞ ‖gnk − unk‖ = 0. From
(3.30)–(3.34), we can show that

lim
k→∞ τnk‖unk − gnk‖‖xnk+1 − p‖ = 0,

and

lim sup
k→∞

〈p, p − xnk+1〉 ≤ 0 .

Combining these with Remark 3.1 (i), Claim 3 and Lemma 2.4, we deduce that xn → p.
This completes the proof. ��

3.4 The Algorithm 3.4

Finally, we introduce a modified version of Algorithm 3.3, which uses the viscosity-type
method to ensure the strong convergence of the suggested iterative scheme. The method is
stated as follows:

Algorithm 3.4 The self-adaptive inertial viscosity-type algorithm for (SVIP)
Initialization: Set λ > 0, ϑ > 0, ϕn ∈ (0, 2) and let x0, x1 ∈ H .
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎨

⎪⎩

un = xn + ϑn(xn − xn−1) ,

gn = JλF1 [un − γn A
∗(I − JλF2 )Aun ] ,

xn+1 = σn f (xn) + (1 − σn)gn ,

where {ϑn} and {γn} are defined in (3.1) and (3.35), respectively.

Based on the proofs of Theorems 3.1 and 3.3 , we will give the convergence analysis of
Algorithm 3.4 in a compact way.

Theorem 3.4 Suppose that Conditions (C1)–(C3) and (C5) hold. Then the sequence {xn}
created by Algorithm 3.4 converges to p ∈ � in norm, where p = P� ◦ f (p).

Proof Claim 1. The sequence {xn} is bounded. Indeed, using (3.12)–(3.14) and (3.36), we
have

‖xn+1 − p‖ = ‖σn( f (xn) − p) + (1 − σn)(gn − p)‖
≤ max

{
‖x0 − p‖, ‖ f (p) − p‖ + M1

1 − ρ

}
.

This means that {xn} is bounded. Hence, { f (xn)}, {un} and {gn} are also bounded.

Claim 2.

(1 − σn)γn(2 − ϕn)‖(I − JλF2)Aun‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + σnM4 ,

and

(1 − σn)‖gn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + σnM4

+ 2(1 − σn)γn‖gn − p‖‖A∗(I − JλF2)Aun‖ .

123



   20 Page 18 of 34 Journal of Scientific Computing            (2021) 87:20 

Indeed, using (3.15) and Lemma 3.5, we get

‖xn+1 − p‖2 ≤ σn‖ f (xn) − p‖2 + (1 − σn)‖gn − p‖2
≤ σn(‖ f (xn) − f (p)‖ + ‖ f (p) − p‖)2 + (1 − σn)‖gn − p‖2
≤ σn‖xn − p‖2 + (1 − σn)‖gn − p‖2

+ σn(2‖xn − p‖ · ‖ f (p) − p‖ + ‖ f (p) − p‖2)
≤ σn‖xn − p‖2 + (1 − σn)‖gn − p‖2 + σnM3

≤ ‖xn − p‖2 − (1 − σn)γn(2 − ϕn)‖(I − JλF2)Aun‖2 + σnM4 ,

(3.37)

where M4 := M2 + M3. The first desired result can be achieved by a simple conversion.
On the other hand, from the fact that JλF1 is firmly nonexpansive, we get

2‖gn − p‖2 = 2‖JλF1(un − γn A
∗(I − JλF2)Aun) − JλF1(p)‖2

≤ 2〈gn − p, un − γn A
∗(I − JλF2)Aun − p〉

= ‖gn − p‖2 + ‖un − γn A
∗(I − JλF2)Aun − p‖2

− ‖gn − p − (un − γn A
∗(I − JλF2)Aun − p)‖2

= ‖gn − p‖2 + ‖un − p‖2 + γ 2
n ‖A∗(I − JλF2)Aun‖2

− 2〈un − p, γn A
∗(I − JλF2)Aun〉 − ‖gn − un‖2

− γ 2
n ‖A∗(I − JλF2)Aun‖2 − 2〈gn − un, γn A

∗(I − JλF2)Aun〉
= ‖gn − p‖2 + ‖un − p‖2 − ‖gn − un‖2

+ 2〈gn − p, γn A
∗(JλF2 − I )Aun〉 ,

which implies that

‖gn − p‖2 ≤ ‖un − p‖2 − ‖gn − un‖2 + 2γn‖gn − p‖‖A∗(I − JλF2)Aun‖ .

This together with (3.15) and (3.37) obtains

‖xn+1 − p‖2 ≤ σn‖xn − p‖2 + (1 − σn)‖gn − p‖2 + σnM3

≤ σn‖xn − p‖2 + (1 − σn)‖un − p‖2 + σnM3

− (1 − σn)
(‖gn − un‖2 − 2γn‖gn − p‖‖A∗(I − JλF2 )Aun‖

)

≤ ‖xn − p‖2 − (1 − σn)
(‖gn − un‖2 − 2γn‖gn − p‖‖A∗(I − JλF2 )Aun‖

) + σnM4 .

By a simple transformation, we get the second desired result.

Claim 3.

‖xn+1 − p‖2 ≤ (1 − (1 − ρ)σn)‖xn − p‖2 + (1 − ρ)σn ·
[ 3M

1 − ρ
· ϑn

σn
‖xn − xn−1‖

+ 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

]
,

123



Journal of Scientific Computing            (2021) 87:20 Page 19 of 34    20 

This result can be obtained by using the same facts as the Claim 3 of Theorem 3.1.

Claim 4. {‖xn − p‖2} converges to zero. We assume that
{‖xnk − p‖} is a subsequence

of {‖xn − p‖} such that lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. By Claim 2 and
Condition (C3), we have

(1 − σnk )γnk (2 − ϕnk )‖(I − JλF2 )Aunk ‖2 ≤ lim sup
k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2 + σnk M4
]

≤ 0 ,

which implies that limk→∞ ‖(I − JλF2)Aunk‖ = 0. This together with Claim 2 yields that
limk→∞ ‖gnk − unk‖ = 0. From (3.18)–(3.23), we observe that

lim sup
k→∞

〈 f (p) − p, xnk+1 − p〉 ≤ 0 .

This together with Remark 3.1 (i), Claim 3 and Lemma 2.4 concludes that xn → p. The
proof of the theorem is now complete. ��

Remark 3.3 We note here that the proposed algorithms directly improve some known results
in the literature. The details are as follows:

(i) Our presented methods have strong convergence in real Hilbert spaces, which is more
preferable than the weak convergence results of Byrne et al. [7], Chuang [17], Majee
and Nahak [18] and Kesornprom and Cholamjiak [28]. Moreover, our Algorithms 3.1
and 3.4 use the viscosity-type method to ensure strong convergence, which makes them
faster than the Halpern-type methods in the literature [7,8,34].

(ii) The selection of the step size in the algorithms provided by [7–10,12,13,17,18,24–26]
requires the prior information of the operator (matrix) norm, while our algorithms can
adaptively update the step size of each iteration. On the one hand, it is not easy to estimate
the operator (matrix) norm of the bounded linear operator A in practical applications.
On the other hand, it should be pointed out that Armijo-type search methods need to
evaluate the value of the iterative sequences {un, qn} at operator A and the resolvent
mapping of F2 multiple times in each iteration. The proposed Algorithms 3.3 and 3.4 use
a method that does not involve any line search process. The method only needs to use
known information for a simple calculation in each iteration to complete the step size
update. Therefore, our self-adaptive iterative schemes (especially for Algorithms 3.3 and
3.4 ) are more preferable than the fixed-step methods and the Armijo-type methods [28].

(iii) In [24, Algorithm 3.3], Thong et al. [24] calculated gn by gn = un −μncn , however, our
Algorithms 3.1 and 3.2 calculate gn via gn = un − κμncn , where κ ∈ (0, 2). Obviously,
our two methods for calculating gn are preferable to Thong et al. [24]. Furthermore,
Algorithm 3.3 and Anh et al.’s Algorithm [26, Algorithm 4] update xn+1 differently. To
be more precise, we calculate xn+1 = (1−σn −τn)un +τngn , while Anh et al. calculated
xn+1 = (1− σn − τn)xn + τngn . Numerical experiments show that our iterative scheme
is more efficient than Anh et al.’s algorithm (cf. Sect. 5).

4 Applications

In this section, we apply the proposed algorithms 3.1–3.4 to split feasibility problems and
split minimization problems.
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4.1 Application to Split Feasibility Problems

Recall that the split feasibility problem (SFP) introduced by Censor and Elfving [2] is
described as follows:

find x∗ ∈ C such that Ax∗ ∈ Q , (SFP)

where C and Q are closed convex subsets of real Hilbert spaces H1 and H2, respectively,
and A : H1 → H2 is a bounded linear operator with adjoint operator A∗. We shall denote
� the solution set of (SFP). Based on Algorithm 3.1, we obtain the following result.

Corollary 4.1 LetH1,H2, C, Q, A, A∗ and � be the same as the above statement. Suppose
that � �= ∅, ϑ > 0, ζ > 0, χ ∈ (0, 1), δ ∈ (0, 1), κ ∈ (0, 2), and Conditions (C3) and (C4)
hold. Let x0, x1 ∈ H and {xn} be a sequence generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn + ϑn(xn − xn−1) ,

qn = PC
[
un − γn A

∗ (
I − PQ

)
Aun

]
,

gn = un − κμncn ,

xn+1 = σn f (xn) + (1 − σn)gn ,

where ϑn is defined in (3.1), cn and μn are defined as follows:

cn = un − qn − γn[A∗(I − PQ)Aun − A∗(I − PQ)Aqn] , μn = 〈un − qn, cn〉
‖cn‖2 ,

and γn = ζχrn and rn is the smallest nonnegative integer such that

γn‖A∗(I − PQ)Aun − A∗(I − PQ)Aqn‖ ≤ δ‖un − qn‖ .

Then the iterative sequence {xn} provided above converges to p ∈ � in norm.

In Algorithms 3.2–3.4, if JλF1 = PC and JλF2 = PQ , we can also obtain some sub-results
on the split feasibility problem. We omit them here.

4.2 Application to Split Minimization Problems

In this subsection,we explore the solution of the following splitminimization problem (SMP):

find x∗ ∈ H1 such that x∗ ∈ argminx∈H 1
f (x) and Ax∗ ∈ argminy∈H 2

g(y) , (SMP)

where H1 and H2 represent two real Hilbert spaces, A : H1 → H2 is a linear bounded
operator with its adjoint A∗, and convex functions f : H1 → R and g : H2 → R are proper
lower semicontinuous. For convenience, we also use� to represent the solution set of (SMP)
and assume that � �= ∅. Let proxλ f represent the proximal mapping of a proper convex and
lower semicontinuous function f : H1 → R with a parameter λ > 0, which is defined as
follows:

proxλ f (x) := argminy∈H 1

{
λ f (y) + 1

2
‖y − x‖2

}
.

It iswell known that proxλ f (x) = (I+λ∂ f )−1(x) = Jλ∂ f (x),where ∂ f is the subdifferential
of f defined by

∂ f (x) := {z ∈ H : f (y) − f (x) ≥ 〈z, y − x〉, ∀y ∈ H }, ∀x ∈ Dom( f ) .
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It is known that ∂ f is maximal monotone and proxλ f is firmly nonexpansive. Thus, the
following corollary follows directly from Algorithm 3.3.

Corollary 4.2 Let H1, H2, f , g, A, A∗ and � be the same as the above statement. Assume
that � �= ∅, λ > 0, ϑ > 0, ϕn ∈ (0, 2), and Conditions (C3) and (C5) hold. Let x0, x1 ∈ H
and {xn} be a sequence created by

⎧
⎪⎨

⎪⎩

un = xn + ϑn(xn − xn−1) ,

gn = proxλ f [un − γn A
∗(I − proxλg)Aun] ,

xn+1 = (1 − σn − τn)un + τngn ,

where ϑn is defined in (3.1) and the stepsize γn is updated by the following:

γn =

⎧
⎪⎨

⎪⎩

ϕn‖(I − proxλg)Aun‖2
‖A∗(I − proxλg)Aun‖2

, if ‖A∗(I − proxλg)Aun‖ �= 0;
0, otherwise.

Then the iterative sequence {xn} constructed above converges to p ∈ � in norm.

In Algorithms 3.1, 3.2 and 3.4 , if JλF1 = proxλ f and JλF2 = proxλg , we can also obtain
some sub-results on the split minimization problem. We omit them here.

5 Numerical Experiments

In this section, we provide some numerical examples occurring in finite- and infinite- dimen-
sional spaces to show the advantages of our algorithms, and compare them with some known
strongly convergent algorithms, including Byrne et al.’s Algorithm 4.4 (shortly, BCGR
Alg. 4.4) [7], Kazmi and Rizvi’s Algorithm (3.1) (KR Alg. (3.1)) [8], Thong et al.’s Algo-
rithm 3.3 (TDCAlg. 3.3) [24], Long et al.’s Algorithm (49) (LTDAlg. (49)) [25], Anh et al.’s
Algorithm (4) (ATD Alg. 4) [26] and Suantai et al.’s Algorithm 3 (SKC Alg. 3) [34]. All the
programs are implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU @
1.60GHz computer with RAM 8.00 GB. Before starting our numerical experiments, we first
review the strongly convergent algorithms that need to be compared. These iterative schemes
and their convergence conditions are described in Table 1.

In the following numerical experiments, the parameters of all algorithms are set as follows:

• In all algorithm, we set λ = 1, σn = 1/(n + 1), τn = 0.5(1 − σn) and f (x) = 0.5x .
• In BCGR Alg. 4.4, KR Alg. (3.1), TDC Alg. 3.3, LTD Alg. (49) and ATD Alg. 4, we

choose stepsize γ = 0.5/‖A‖2.
• In TDC Alg. 3.3, LTD Alg. (49) and ATD Alg. 4, we update the inertia parameter ϑn

through (3.1). In these three algorithms and the offered algorithms 3.1–3.4, we take
�n = 1/(n + 1)2 and ϑ = 0.5.

• In our Algorithms 3.1 and 3.2 , we adopt ζ = 2, χ = 0.5, δ = 0.5, κ = 1. Set ϕn = 1.5
in our Algorithms 3.3 and 3.4 . In SKC Alg. 3, we take u = x0, ϕn = 3 and ιn = 1/n3.

Example 5.1 Assume that A, A1, A2 : R
m → R

m are created from a normal distribution
with mean zero and unit variance. Let F1 : Rm → R

m and F2 : Rm → R
m be defined by

F1(x) = A∗
1A1x and F2(y) = A∗

2A2y, respectively. Consider the problem of finding a point
x̄ = (x̄1, . . . , x̄m)T ∈ R

m such that F1(x̄) = (0, . . . , 0)T and F2(Ax̄) = (0, . . . , 0)T. It is easy
to see that the minimum norm solution of the problem mentioned above is x∗ = (0, . . . , 0)T.
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Table 2 The number of termination iterations and execution time of all algorithms with different stopping
criteria (m = 100) in Example 5.1

Algotithms εn = 10−4 εn = 10−5 εn = 10−6 εn = 10−7

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 23 0.0345 32 0.0365 36 0.0336 39 0.0407

Our Alg. 3.2 22 0.0342 31 0.0353 39 0.0363 49 0.0543

Our Alg. 3.3 17 0.0185 19 0.0172 25 0.0170 29 0.0218

Our Alg. 3.4 11 0.0147 15 0.0135 18 0.0125 21 0.0142

BCGR Alg. 4.4 299 0.4177 299 0.4251 299 0.4180 299 0.4335

KR Alg. (3.1) 80 0.1163 103 0.1449 126 0.1724 149 0.2090

TDC Alg. 3.3 39 0.0673 47 0.0718 55 0.0747 63 0.0879

LTD Alg. (49) 41 0.0659 49 0.0734 57 0.0764 66 0.0909

ATD Alg. 4 71 0.1075 100 0.1471 131 0.1830 164 0.2346

SKC Alg. 3 299 0.2086 299 0.2015 299 0.2060 299 0.2112

We use En = ‖xn − x∗‖ to measure the iteration error of all the algorithms. The stopping
condition is either En < ε, or maximum number of iterations which is set to 299. First,
choosing ε = 10−2, 10−3, 10−4, 10−5. We test the convergence behavior of all algorithms
under different stopping conditions. The numerical results are shown in Table 2 and Fig. 1.
Second, Table 3 and Fig. 2 describe the numerical behavior of all algorithms in different
dimensions with the same stopping criterion ε = 10−7.

Remark 5.1 From the numerical results of Example 5.1, we have the following observations:

(1) The four iterative schemes proposed in this paper are efficient and easy to implement.
The most important thing is that they converge quickly.

(2) Our offered methods converge faster than some known algorithms in the literature in
terms of the number of iterations and execution time, and these observations have no
significant relationship with the dimensions of the problem and the selection of initial
values (cf. Table 2, Table 3, Figs. 1, 2).

Example 5.2 Assume thatH1 andH2 are real Hilbert spaces, and A : H1 → H2 is a bounded
linear operatorwith its adjoint A∗. LetC and Q be nonempty closed and convex subsets ofH1

andH2, respectively. We consider the split feasibility problem (SFP) in infinite-dimensional
Hilbert spaces, which reads as

find x∗ ∈ C such that Ax∗ ∈ Q .

For any x, y ∈ L2([0, 1]), we consider H1 = H2 = L2([0, 1]) embedded with the inner
product 〈x, y〉 := ∫ 1

0 x(t)y(t) dt and the induced norm ‖x‖ := ( ∫ 1
0 |x(t)|2 dt)1/2. Consider

the following nonempty closed and convex subsets C and Q in L2([0, 1]):

C =
{
x ∈ L2([0, 1]) |

∫ 1

0
x(t) dt ≤ 1

}
,

Q =
{
x ∈ L2([0, 1]) |

∫ 1

0
|x(t) − sin(t)|2 dt ≤ 16

}
.
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(a) (b)

(c) (d)

Fig. 1 Numerical behavior of all algorithms with different stopping criteria in Example 5.1

Let A : L2([0, 1]) → L2([0, 1]) be the Volterra integration operator, which is given by
(Ax)(t) = ∫ t

0 x(s) ds, ∀t ∈ [0, 1], x ∈ H . Then A is a bounded linear operator (see [39,
Exercise 20.16]) and its operator norm is ‖A‖ = 2

π
. Moreover, the adjoint A∗ of A is defined

by (A∗x)(t) = ∫ 1
t x(s) ds. Note that x(t) = 0 is a solution of (SFP) and thus the solution set

of the problem is nonempty. On the other hand, it is known that projections on sets C and Q
have display formulas, that is,

PC (x) =
{
1 − a + x , a > 1 ;
x , a ≤ 1 .

and PQ(x) =
{
sin(·) + 4(x−sin(·))√

b
, b > 16 ;

x , b ≤ 16 ,

where a := ∫ 1
0 x(t) dt and b := ∫ 1

0 |x(t) − sin(t)|2 dt .
We use symbolic computation in MATLAB to implement these algorithms for generating

the sequences of iterates and use En = ‖(I − PC )xn‖2 + ∥
∥A∗(I − PQ)Axn

∥
∥2 < 10−5 for

stopping criterion. We do not report the numerical results of BCGR Alg. 4.4 and SKC Alg.
3 here because they converge slowly. Table 4 and Fig. 3 show the numerical behavior of all
algorithms (except BCGRAlg. 4.4 and SKCAlg. 3) with four different initial values x0 = x1.

Remark 5.2 It can be seen from Table 4 and Fig. 3 that the proposed approaches are easy
to implement and efficient. In addition, our suggested methods (especially Alg. 3.3 and
Alg. 3.4) require fewer iterations than some algorithms in the literature to achieve the same
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Table 3 The number of termination iterations and execution time of all algorithms with different dimensions
(εn = 10−7) in Example 5.1

Algotithms m = 200 m = 400 m = 600 m = 800

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 35 0.1523 33 0.5510 39 1.1640 36 2.4639

Our Alg. 3.2 38 0.1603 37 0.6209 44 1.3438 39 2.7218

Our Alg. 3.3 28 0.0881 27 0.3723 26 0.6524 28 1.2189

Our Alg. 3.4 20 0.0689 16 0.2252 17 0.4076 17 0.7902

BCGR Alg. 4.4 299 1.8065 299 8.7384 299 17.9115 299 37.5884

KR Alg. (3.1) 120 0.7502 105 3.1241 124 7.4629 117 15.2309

TDC Alg. 3.3 40 0.2644 39 1.1668 46 2.7830 44 5.7761

LTD Alg. (49) 44 0.2896 40 1.1718 51 3.3261 46 6.0827

ATD Alg. 4 129 0.8595 116 3.4534 140 8.7756 131 17.7027

SKC Alg. 3 299 0.9027 299 4.2046 299 6.6302 299 13.7081

(a) (b)

(c) (d)

Fig. 2 Numerical behavior of all algorithms with different dimensions in Example 5.1
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Table 4 The number of termination iterations and execution time of all algorithms with different initial values
(x0 = x1) in Example 5.2

Algotithms x1 = 500 sin(t) x1 = 1000t2 x1 = 500(t3 + 2t) x1 = 300 log(t)

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 15 37.529 23 29.429 25 69.7555 22 144.176

Our Alg. 3.2 8 14.119 13 15.578 16 42.096 13 75.2286

Our Alg. 3.3 11 7.4645 9 4.0796 12 10.9242 5 3.476

Our Alg. 3.4 9 7.3766 14 7.4795 17 16.4684 8 6.5769

KR Alg. (3.1) 21 4.5369 31 5.3176 35 6.5202 28 5.7873

TDC Alg. 3.3 16 26.817 26 24.806 28 51.2577 25 160.579

LTD Alg. (49) 21 18.055 31 15.019 34 31.9965 28 56.5573

ATD Alg. 4 9 6.7382 16 7.4592 20 16.6949 12 12.249

(a) (b)

(c) (d)

Fig. 3 Numerical behavior of all algorithms with different initial values in Example 5.2

error accuracy, and these results are independent of the selection of initial values. It is worth
noting that our Algorithms 3.1 and 3.2 enjoy fewer iterations while accompanied by more
execution time (because the Armijo-type line search criterion (3.2) takes more time to find
a suitable stepsize). Moreover, it should be pointed out that the operator norm ‖A‖ of this
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Fig. 4 Structure of compressive sensing matrices

Table 5 The numerical results of all algorithms for solving (LASSO) in case M = 256, N = 512 and k = 10

Measurement result Our algotithms

Our Alg. 3.1 Our Alg. 3.2 Our Alg. 3.3 Our Alg. 3.4

MSE (×10−4) 0.1786 0.2084 0.1838 0.1730

Time (s) 0.4887 0.5200 0.1202 0.1184

Measurement result Comparison algotithms
KR Alg. (3.1) TDC Alg. 3.3 LTD Alg. (49) ATD Alg. 4

MSE (×10−4) 0.1801 0.1786 0.1801 0.2153

Time (s) 1.6703 0.1681 1.6658 1.6427
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Fig. 6 The original signal and the signal recovered by our algorithms
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(a) (b)

(c) (d)

Fig. 8 The original signal and the signal recovered by our Algorithm 3.4

problem is not easy to obtain, which means that the algorithms of fixed step size will fail.
However, the self-adaptive algorithms presented in this paper can work well.

Example 5.3 Compressed sensing is an effective method to recover a clean signal from a
polluted signal. This requires us to solve the following underdetermined system problems:

y = Ax + ε ,

where y ∈ R
M is the observed noise data,A : RM×N is a bounded linear observation operator,

x ∈ R
N with k (k � N ) non-zero elements is the original and clean data that needs to be

restored, and ε is the noise observation encountered during data transmission. An important
consideration of this problem is that the signal x is sparse, that is, the number of non-zero
elements in the signal x is much smaller than the dimension of the signal x. Figure 4 visually
shows the matrix structure expression of compressed sensing.

A successful model used to solve the above problem can be translated into the following
convex constraint minimization problem:

min
x∈RN

1

2
‖y − Ax‖2 subject to ‖x‖1 ≤ t , (LASSO)

where t is a positive constant. It should be pointed out that this problem is related to the least
absolute shrinkage and selection operator (LASSO) problem.Note that the (LASSO) problem
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(a) (b)

(c) (d)

Fig. 9 The discrepancy of mean squared error (MSE) of all algorithms

described above can be regarded as a special case of (SFP) when C = {
x ∈ R

N : ‖x‖1 ≤ t
}

and Q = {y}. In this situation, we can use the projection formulas described in Sect. 2 to
calculate PC and PQ .

We now consider using the proposed iterative schemes to solve (LASSO) and compare
them with some known algorithms in the literature. In our numerical experiments, the matrix
A ∈ R

M×N is created from a standard normal distribution with zero mean and unit variance
and then orthonormalizing the rows. The clean signal x ∈ R

N contains k (k � N ) randomly
generated ±1 spikes. The observation y is formed by y = Ax+ ε with white Gaussian noise
ε of variance 10−4. The recovery process starts with the initial signals x0 = x1 = 0 and
ends after 2000 iterations. We use the mean squared error MSE = (1/N ) ‖x∗ − x‖2 (x∗ is an
estimated signal of x) tomeasure the restoration accuracy of all algorithms. In our first test, we
set M = 256, N = 512 and k = 10. The numerical results are shown in Table 5 and Figs. 5, 6
and 7. Figure 5 displays the original signal and the contaminated signal. The recovery results
of the suggested algorithms are shown in Fig. 6. Table 5 presents the numerical results of all
algorithms, including the mean squared error (MSE) of the restored signal and the original
signal, and the execution time required for the iterative process. Figure 7 gives the numerical
behavior of the MSE of all algorithms in the iteration process.

Next, in order to demonstrate the robustness of the proposed algorithms, we conduct
signal recovery tests with different dimensions and different sparsity. The numerical results
are reported in Table 6, Figs. 8 and 9.
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Remark 5.3 As can be seen from the numerical results of Example 5.3, the proposed algo-
rithms can be applied to signal processing problems in compressed sensing, and they can
work well (see Figs. 6, 8). Under the same number of iterations, the presented algorithms
have smaller mean squared error and cpu time than the compared algorithms (cf. Tables 5,
6), which implies that our proposed algorithms perform better and converge faster in the
signal recovery tests (cf. Figs. 7, 9). Furthermore, as shown in the previous two examples,
our algorithms are still robust in this example, because the dimension and sparsity of the
signal have no significant influence on our results.

6 The Conclusion

In this paper, we presented four inertial algorithms for finding the solution to the split vari-
ational inclusion problem in real Hilbert spaces. Our approaches can adaptively update the
iteration step size without knowing the prior information of the operator norm. Under some
suitable conditions, we established the strong convergence theorems of the suggested algo-
rithms. The applications of our results in split feasibility problems and split minimization
problems were given. Finally, we demonstrated the computational efficiency of the offered
algorithms compared with other ones through numerical experiments in finite- and infinite-
dimensional spaces as well as signal recovery problems. The algorithms obtained in this
paper improved and extended some known results in the literature.
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