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Abstract
This paper investigates some inertial projection and contraction methods for solving pseu-
domonotone variational inequality problems in real Hilbert spaces. The algorithms use a
new non-monotonic step size so that they can work without the prior knowledge of the Lip-
schitz constant of the operator. Strong convergence theorems of the suggested algorithms
are obtained under some suitable conditions. Some numerical experiments in finite- and
infinite-dimensional spaces and applications in optimal control problems are implemented
to demonstrate the performance of the suggested schemes and we also compare them with
several related results.
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1 Introduction

The theory of variational inequalities has become an important tool of pure and applied
sciences. It builds a unified and general framework for many problems. It is known that
numerous problems in society and science can be represented via the model of variational
inequalities that plays an essential role in both nonlinear optimization theory and practi-
cal applications; see, for example, [1,8,19,26,27]. Recently, variational inequalities attracted
considerable attention from many researchers who are interested not only in obtaining the-
oretical results but also in numerical approaches to solve such problems approximately. Let
us first review the classical variational inequality problem (shortly, VIP) whose form is as
follows:

find x∗ ∈ C such that 〈Mx∗, x − x∗〉 ≥ 0, ∀x ∈ C , (VIP)

where C is a nonempty closed convex subset of a real Hilbert space H with inner product
〈·, ·〉 and norm ‖ · ‖, and M : H → H is a nonlinear mapping. The solution set of (VIP) is
denoted by VI(C, M) in this paper.

The earliest and easiest way to solve (VIP) is the projected gradient method. However,
the convergence of this method needs to ensure the strong monotonicity of the cost operator,
which limits the implementation of the method. Recently, a large number of approaches
have been exploited to avoid the hypothesis of the strong monotonicity of mapping M ; see,
e.g., [6,9,20,35]. In this paper, we mainly consider the methods based on projections. The
extragradientmethod (EGM)was proposed byKorpelevich [20] to solve themonotoneVIP. In
view of the EGM,we see that it needs to calculate two projections on the feasible set C in each
iteration, which may severely affect the computational performance of the algorithm when C
has a complex structure. There are three noteworthymethods in the literature to overcome the
shortcomings of the EGM. The first is the Tseng’s extragradient method (TEGM) suggested
byTseng [35]. Thismethod is a two-step iterative scheme and the second step does not involve
any projection steps. The second is the subgradient extragradient method (SEGM) proposed
by Censor, Gibali and Reich [6]. The SEGM replaces the second projection of the EGMwith
the projection on a half-space. It is known that the projection on a half-space can be calculated
by an explicit formula. The third approach is the projection and contraction method (PCM)
considered in [17,33], which is a two-step iterative method and only calculates one projection
per iteration. It is worth noting that TEGM, SEGM and PCM only calculate the projection on
the feasible set C once in each iteration, which greatly improves the computational efficiency
of such algorithms.

Note that the algorithms mentioned above all achieve weak convergence in infinite-
dimensional Hilbert spaces. However, the applications appearing in medical imaging and
machine learning tell us that the strong convergence is preferable to the weak convergence in
an infinite-dimensional space. In 2017, Yekini and Olaniyi [28] suggested a viscosity-type
modification of the SEGM with the adoption of the Armijo-like step size rule. Under some
standard and mild conditions, they established the strong convergence of the suggested iter-
ative scheme. In addition, inspired by the Mann-type method, the SEGM and the TEGM,
Thong and Hieu [36] proposed two new self-adaptive iterative methods that use some pre-
vious results to automatically update the step size. Under some suitable assumptions, they
obtained the strong convergence of the iterative sequence generated by their algorithms.
Recently, Dong, Jiang and Gibali [11] stated a modified subgradient extragradient method
that combines the SEGM and the PCM. They proved that the iterative sequence formed by
their method converges weakly to a solution of the (VIP) under some conditions. Their exam-
ple illustrates the numerical achievements and benefits of this new method compared with
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the SEGM and the PCM. Excited by the work of Dong et al. [11], Thong and Gibali [37],
and Gibali et al. [15] obtained some strongly convergent methods to solve the monotone VIP
by combining the Mann method and the viscosity method.

In recent years, the development of fast iterative algorithms has aroused great interest
from the researchers working in the signal and imaging. They built various fast numerical
algorithms by employing the inertial technology, see, for instance, [12,16,29,30,39,40] and
the references therein.Oneof the common features of these algorithms is that the next iteration
depends on the combination of the previous two iterations. Note that thisminor change greatly
improves the performance of the algorithm used. Recently, Dong et al. [13] introduced an
inertial projection and contraction method (IPCM) by connecting the inertial method and the
PCM to solve the monotone VIP. They confirmed that their iterative procedure achieved the
weak convergence in Hilbert spaces under suitable assumptions. Moreover, the IPCM has
shown benefits and performance over other algorithms through some computational tests.
By associating the IPCM with the Mann method and the viscosity method, respectively,
Thong et al. [38] and Cholamjiak et al. [7] established the strong convergence theorems of
the proposed iterative schemes.

Note that the above mentioned methods [11,13,15,28,36–38] were obtained under the
premise that the operator is monotone. However, many problems do not satisfy the fact that
the potential operator is monotone. Since the class of pseudomonotonemappings includes the
class of monotone mappings, this paper focuses on the pseudomonotone VIP. There are some
numerical methods based on the SEGM and the PCM in the literature [7,31,32,42] that can
solve the pseudomonotoneVIP. It should be pointed out that themethods suggested in [32,42]
achieve the weak convergence only. Furthermore, the algorithms proposed in [7,31,38] need
to know the prior information of the Lipschitz constant of the mapping, which limits the
realization of such algorithms when the Lipschitz constant of the mapping associated with
the problem is unknown. It is known that the prior information of the Lipschitz constant
of the operator in practical problems is not easy to obtain. A natural problem that arises
is how to update the iteration step size when we do not know the prior information of the
Lipschitz constant of the cost operator related to the problem. The methods suggested in
[11,15,28,37] used the Armijo-like criteria to update the iteration step size. The disadvantage
of this criterion is that, in each iteration, in order to determine an approximate step size, the
value of operator M needs to be evaluated multiple times, which will greatly increase the
execution time of the algorithm used. Recently, Shehu and Iyiola [32] studied the IPCMwith
a simple step size to solve the VIP and established the strong convergence of the proposed
iterativemethod in infinite-dimensionalHilbert spaces.However, the iteration step size in [32]
will not increase from iteration to iteration, which will affect the calculation performance
of the algorithm. Very recently, Yang [43] introduced two self-adaptive iterative schemes
with a non-monotonic step size to solve the equilibrium problem and established the weak
convergence of the algorithms in real Hilbert spaces. Their numerical experiments show that
the suggested algorithms have competitive advantages over other ones.

In this paper, motivated and stimulated by the results mentioned above, we introduce
several inertial projection and contraction methods to find the solution of the pseudomono-
tone VIP in real Hilbert spaces. These methods use a new non-monotonic step size criterion
so that they do not need to know the Lipschitz constant of the pseudomonotone mapping.
Furthermore, they embedded inertial terms to accelerate the convergence speed of the algo-
rithms. Under reasonable assumptions on the parameters, the strong convergence theorems
of the suggested algorithms are obtained. Our iterative schemes improve and extend some
previously known results in [7,11,13,15,28,31,32,36–38,42].
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The rest of this paper is organized as follows. In Sect. 2, we recall some definitions and
lemmas that need to be used. Section 3 is devoted to describing the algorithms and analyzing
their convergence. In Sect. 4, we present some computational tests to show the efficiency of
the suggested approaches over several existing ones. In Sect. 5, the proposed methods are
investigated to solve the optimal control problems. Finally, the paper ends with a brief remark
in Sect. 6, the last section.

2 Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH. The weak conver-
gence and strong convergence of {xn} to x are represented by xn⇀x and xn → x , respectively.
For each x, y, z ∈ H, we have the following inequalities:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.
(2) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, α ∈ R.
(3) ‖αx+β y+γ z‖2 = α‖x‖2+β‖y‖2+γ ‖z‖2−αβ‖x−y‖2−αγ ‖x−z‖2−βγ ‖y−z‖2,

where α, β, γ ∈ [0, 1] with α + β + γ = 1.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such
that PC(x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric projection of H onto C. It is
known that PC has the following basic properties:

• 〈x − PC(x), y − PC(x)〉 ≤ 0, ∀y ∈ C.
• ‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉, ∀y ∈ H.

We give some projection calculation formulas that need to be used in numerical experi-
ments. For more calculations on projections on specific sets, we refer to [2].

(1) The projection of x onto a half-space Hu,v = {x ∈ R
n : 〈u, x〉 ≤ v} is computed by

PHu,v (x) = x − max{[〈u, x〉 − v]/‖u‖2, 0}u .

(2) The projection of x onto a box Box[a, b] = {x ∈ R
n : a ≤ x ≤ b} is computed by

PBox[a,b](x)i = min {bi ,max {xi , ai }} .

(3) The projection of x onto the intersection of a hyperplane and a box C = Hu,v ∩
Box[a, b] = {

x ∈ R
n : uTx = v, a ≤ x ≤ b

}
is computed by

PC(x) = PBox[a,b](x − μ∗u) ,

where μ∗ is a solution of the equation ϕ(μ) = uTPBox[a,b](x − μu) − v.
(4) The projection of x onto a ball B[p, q] = {x ∈ R

n : ‖x − p‖ ≤ q} is computed by

PB[p,q](x) = p + q

max{‖x − p‖, q} (x − p) .

For any x, y ∈ H, a mapping M : H → H is said to be:

(1) η-strongly monotone with η > 0 if 〈Mx − My, x − y〉 ≥ η‖x − y‖2.
(2) L-Lipschitz continuous with L > 0 if ‖Mx − My‖ ≤ L‖x − y‖. If L ∈ (0, 1) then

mapping M is called contraction. In particular, when L = 1, mapping M is called
nonexpansive.

(3) monotone if 〈Mx − My, x − y〉 ≥ 0.
(4) pseudomonotone if 〈Mx, y − x〉 ≥ 0 �⇒ 〈My, y − x〉 ≥ 0.
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(5) sequentially weakly continuous if for each sequence {xn} converges weakly to x implies
{Mxn} converges weakly to Mx .

According to the above definitions, we see that the following fact holds: (1) �⇒ (3) �⇒ (4).
But the inverse operation is usually not true as can be seen in the following example.

Example 2.1 Let M : (0,∞) → (0,∞) be a mapping defined by Mx = a
a+x with a > 0. It

is easy to check that M is pseudomonotone but not monotone.

The following lemmas will be used frequently in the proof of our main results.

Lemma 2.1 ([10]) Assume that C is a closed and convex subset of a real Hilbert spaceH. Let
operator M : C → H be continuous and pseudomonotone. Then, x∗ is a solution of (VIP) if
and only if 〈Mx, x − x∗〉 ≥ 0, ∀x ∈ C.

Lemma 2.2 ([34]) Let {pn} be a positive sequence, {qn} be a sequence of real numbers,
and {σn} be a sequence in (0, 1) such that

∑∞
n=1 σn = ∞. Suppose that pn+1 ≤ σnqn +

(1 − σn) pn, ∀n ≥ 1. If lim supk→∞ qnk ≤ 0 for every subsequence
{
pnk

}
of {pn} satisfying

lim infk→∞
(
pnk+1 − pnk

) ≥ 0, then limn→∞ pn = 0.

3 Main results

In this section, we introduce six new iterative schemes based on the SEGM and the IPCM
to solve the pseudomonotone VIP in a real Hilbert space. These algorithms guarantee the
strong convergence with the aid of the Mann-type method and the viscosity-type method.
The advantage of our approaches is that we do not need to know the Lipschitz constant of the
pseudomonotone mapping in advance. In order to analyze the convergence of the algorithms,
themapping and parameters involved in ourmethods need tomeet the following assumptions.

(1) The feasible set C is a nonempty, closed and convex subset of H;
(2) The solution set of the (VIP) is nonempty, that is VI(C, M) �= ∅;
(3) The mapping M : H → H is L-Lipschitz continuous and pseudomonotone on H, and

sequentially weakly continuous on C;
(4) Let {εn} and {ξn} be two nonnegative sequences such that limn→∞ εn

σn
= 0 and

∑∞
n=1 ξn < +∞, where {σn} ⊂ (0, 1) satisfies limn→∞ σn = 0 and

∑∞
n=1 σn = ∞.

Let {ϕn} ⊂ (a, b) ⊂ (0, 1 − σn) for some a > 0, b > 0.

Remark 3.1 We note here that the assumption (C4) is easily satisfied by, for example, taking
σn = 1/(n + 1), εn = 1/(n + 1)2, ϕn = 0.5(1 − σn) and ξn = 1/(n + 1)1.1. Moreover, it is
not necessary to impose the sequential weak continuity when mapping M is monotone, see
[14].

3.1 TheMann-type inertial subgradient extragradient algorithm

The first algorithm is based on the IPCM, the SEGM and the Mann-type method, and its
details are described below.

Remark 3.2 It follows from (3.1) and Assumption (C4) that

lim
n→∞

τn

σn
‖xn − xn−1‖ = 0 .
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Indeed, we obtain τn‖xn−xn−1‖ ≤ εn,∀n ≥ 1, which together with limn→∞ εn
σn

= 0 implies
that

lim
n→∞

τn

σn
‖xn − xn−1‖ ≤ lim

n→∞
εn

σn
= 0 .

The following basic lemmas are very helpful in analyzing the convergence of the algo-
rithms.

Lemma 3.1 Suppose that Assumption (C3) holds. The sequence {ϑn} generated by (3.2) is
well defined and limn→∞ ϑn = ϑ and ϑ ∈ [

min
{

μ
L , ϑ1

}
, ϑ1 + 

]
, where  = ∑∞

n=1 ξn.

Proof From the fact that mapping M is L-Lipschitz continuous, one has

μ ‖un − yn‖
‖Mun − Myn‖ ≥ μ ‖un − yn‖

L ‖un − yn‖ = μ

L
, if Mun �= Myn .

Thus, ϑn ≥ min
{

μ
L , ϑ1

}
. It follows from the definition of ϑn+1 that ϑn+1 ≤ ϑ1 + . Con-

sequently, the sequence {ϑn} defined in (3.2) is bounded and ϑn ∈ [
min

{
μ
L , ϑ1

}
, ϑ1 + 

]
.

For simplicity, we define

(ϑn+1 − ϑn)
+ = max {0, ϑn+1 − ϑn}

and

(ϑn+1 − ϑn)
− = max {0,− (ϑn+1 − ϑn)} .

By the definition of {ϑn}, one obtains
∑∞

n=1 (ϑn+1 − ϑn)
+ ≤ ∑∞

n=1 ξn < +∞, which
implies that the series

∑∞
n=1 (ϑn+1 − ϑn)

+ is convergent.
Next,we show the convergenceof

∑∞
n=1 (ϑn+1 − ϑn)

−. Suppose that
∑∞

n=1 (ϑn+1 − ϑn)
−

= +∞. Note that ϑn+1 − ϑn = (ϑn+1 − ϑn)
+ − (ϑn+1 − ϑn)

−. Therefore,

ϑk+1 − ϑ1 =
k∑

n=1

(ϑn+1 − ϑn) =
k∑

n=1

(ϑn+1 − ϑn)
+ −

k∑

n=1

(ϑn+1 − ϑn)
− .

Taking k → +∞ in the above equation, we obtain limk→+∞ ϑk → −∞, which is a contra-
diction. Hence, we deduce that limn→∞ ϑn = ϑ and ϑ ∈ [

min
{

μ
L , ϑ1

}
, ϑ1 + 

]
. ��

Remark 3.3 The idea of the step size ϑn defined in (3.2) is derived from [23]. It is worth
noting that the step size ϑn generated in Algorithm 3.1 is allowed to increase when the
iteration increases. Therefore, the use of this type of step size reduces the dependence on
the initial step size ϑ1. On the other hand, because of

∑∞
n=1 ξn < +∞, which implies that

limn→∞ ξn = 0. Consequently, the step size ϑn may not increase when n is large enough. If
ξn = 0, then the step size ϑn in Algorithm 3.1 is similar to the approaches in [32,36].

Lemma 3.2 If yn = un or cn = 0 in Algorithm 3.1, then yn ∈ VI(C, M).

Proof From the L-Lipschitz continuity of the mapping M and (3.2), we obtain

‖cn‖ ≥ ‖un − yn‖ − ϑn‖Mun − Myn‖
≥ ‖un − yn‖ − μϑn

ϑn+1
‖un − yn‖

=
(
1 − μϑn

ϑn+1

)
‖un − yn‖ .

123



Journal of Global Optimization (2022) 82:523–557 529

Algorithm 3.1 The Mann-type inertial subgradient extragradient algorithm
Initialization: Take τ > 0, μ ∈ (0, 1), ϑ1 > 0, θ ∈ (0, 2). Let x0, x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iteration point xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set un = xn + τn(xn − xn−1), where

τn =
⎧
⎨

⎩
min

{
εn

‖xn − xn−1‖ , τ

}
, if xn �= xn−1;

τ, otherwise.
(3.1)

Step 2. Compute yn = PC(un − ϑnMun), where step size ϑn+1 is updated by

ϑn+1 =
⎧
⎨

⎩
min

{
μ ‖un − yn‖

‖Mun − Myn‖ , ϑn + ξn

}
, if Mun �= Myn;

ϑn + ξn , otherwise.
(3.2)

If un = yn , then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = PTn (un − θϑnχnMyn), where the half-space Tn is defined by Tn :=
{x ∈ H | 〈un − ϑnMun − yn , x − yn〉 ≤ 0}, and

χn = 〈un − yn , cn〉
‖cn‖2 , cn = un − yn − ϑn(Mun − Myn) . (3.3)

Step 4. Compute xn+1 = (1 − σn − ϕn)un + ϕnzn .
Set n := n + 1 and go to Step 1.

It can be easily proved that ‖cn‖ ≤ (
1 + μϑn

ϑn+1

)‖un − yn‖. Therefore, we have
(
1 − μϑn

ϑn+1

)
‖un − yn‖ ≤ ‖cn‖ ≤

(
1 + μϑn

ϑn+1

)
‖un − yn‖ ,

and thus un = yn iff cn = 0. Hence, if un = yn or cn = 0, then yn = PC(yn −ϑnMyn). This
implies that yn ∈ VI(C, M). The proof is completed. ��
Lemma 3.3 Suppose that Assumptions (C1)–(C3) hold. Let {un} and {yn} be two sequences
formulated by Algorithm 3.1. If there exists a subsequence {unk } of {un} converges weakly to
z ∈ H and limk→∞ ‖unk − ynk‖ = 0, then z ∈ VI(C, M).

Proof From the property of projection and yn = PC (un − ϑnMun), we have

〈unk − ϑnk Munk − ynk , x − ynk 〉 ≤ 0, ∀x ∈ C ,

which can be written as follows
1

ϑnk
〈unk − ynk , x − ynk 〉 ≤ 〈Munk , x − ynk 〉, ∀x ∈ C .

Through a direct calculation, we obtain

1

ϑnk
〈unk − ynk , x − ynk 〉 + 〈Munk , ynk − unk 〉 ≤ 〈Munk , x − unk 〉, ∀x ∈ C . (3.4)

We obtain that {unk } is bounded since {unk } is converges weakly to z ∈ H. Combining the
Lipschitz continuity of mapping M and {unk } is bounded, we have {Munk } is bounded. It
follows form ‖unk − ynk‖ → 0 that {‖unk − ynk‖} is bounded, which together with the
boundedness of {unk } and the inequality ‖ynk‖ ≤ ‖unk‖ + ‖ynk − unk‖, yields that {ynk } is
also bounded. One concludes from (3.4) that

lim inf
k→∞ 〈Munk , x − unk 〉 ≥ 0, ∀x ∈ C . (3.5)
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Moreover, one has

〈Mynk , x − ynk 〉 =〈Mynk − Munk , x − unk 〉 + 〈Munk , x − unk 〉 + 〈Mynk , unk − ynk 〉 .

(3.6)
Since limk→∞ ‖unk − ynk‖ = 0 and the mapping M is Lipschitz continuous, we obtain that

lim
k→∞ ‖Munk − Mynk‖ = 0.

This together with (3.5) and (3.6) yields that lim infk→∞〈Mynk , x − ynk 〉 ≥ 0.
Next, we select a positive number decreasing sequence {ζk} such that ζk → 0 as k → ∞.

For any k, we represent the smallest positive integer with Nk such that

〈Myn j , x − yn j 〉 + ζk ≥ 0, ∀ j ≥ Nk . (3.7)

It can be easily seen that the sequence {Nk} is increasing because {ζk} is decreasing.Moreover,
for any k, from {yNk } ⊂ C, we can assume MyNk �= 0 (otherwise, yNk is a solution) and set
sNk = MyNk/‖MyNk‖2. Then, we obtain 〈MyNk , sNk 〉 = 1,∀k. Now, we can deduce from
(3.7) that 〈MyNk , x+ζksNk − yNk 〉 ≥ 0,∀k. According to the fact that M is pseudomonotone
on H, we can show that

〈M (
x + ζksNk

)
, x + ζksNk − yNk 〉 ≥ 0 ,

which further yields that

〈Mx, x − yNk 〉 ≥ 〈Mx − M
(
x + ζksNk

)
, x + ζksNk − yNk 〉 − ζk〈Mx, sNk 〉 . (3.8)

Now, we prove that limk→∞ ζksNk = 0. We obtain that yNk⇀z since unk⇀z and
limk→∞ ‖unk− ynk‖ = 0. From {yn} ⊂ C, we have z ∈ C. In view of the fact that M
is sequentially weakly continuous on C, one has that {Mynk } converges weakly to Mz. One
assumes that Mz �= 0 (otherwise, z is a solution). According to the facts that norm mapping
is sequentially weakly lower semicontinuous, we obtain 0 < ‖Mz‖ ≤ lim infk→∞ ‖Mynk‖.
Using {yNk } ⊂ {ynk } and ζk → 0 as k → ∞, we have

0 ≤ lim sup
k→∞

‖ζksNk‖ = lim sup
k→∞

( ζk

‖Mynk‖
)

≤ lim supk→∞ ζk

lim infk→∞ ‖Mynk‖
= 0 .

That is, limk→∞ ζksNk = 0. Thus, from the fact thatM is Lipschitz continuous, the sequences
{yNk } and {uNk } are bounded and limk→∞ ζksNk = 0, we can conclude from (3.8) that
lim infk→∞〈Mx, x − yNk 〉 ≥ 0. Therefore,

〈Mx, x − z〉 = lim
k→∞〈Mx, x − yNk 〉 = lim inf

k→∞ 〈Mx, x − yNk 〉 ≥ 0, ∀x ∈ C .

Consequently, we observe that z ∈ VI(C, M) by means of Lemma 2.1. This completes the
proof. ��

Lemma 3.4 Suppose that Assumptions (C1)–(C3) hold. Let {zn}, {yn} and {un} be three
sequences created by Algorithm 3.1. Then, for all x† ∈ VI(C, M),

‖zn − x†‖2 ≤ ‖un − x†‖2 − ‖un − zn − θχncn‖2 − θ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 .
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Proof From x† ∈ VI(C, M) ⊂ C ⊂ Tn and the property of projection, we obtain

2‖zn − x†‖2 = 2‖PTn (un − θϑnχnMyn) − PTn (x
†)‖2 ≤ 2〈zn − x†, un − θϑnχnMyn − x†〉

= ‖zn − x†‖2 + ‖un − θϑnχnMyn − x†‖2 − ‖zn − un + θϑnχnMyn‖2
= ‖zn − x†‖2 + ‖un − x†‖2 + θ2ϑ2

nχ2
n ‖Myn‖2 − 2〈un − x†, θϑnχnMyn〉

− ‖zn − un‖2 − θ2ϑ2
nχ2

n ‖Myn‖2 − 2〈zn − un, θϑnχnMyn〉
= ‖zn − x†‖2 + ‖un − x†‖2 − ‖zn − un‖2 − 2〈zn − x†, θϑnχnMyn〉 ,

which implies that

‖zn − x†‖2 ≤ ‖un − x†‖2 − ‖zn − un‖2 − 2θϑnχn〈zn − x†, Myn〉 . (3.9)

By yn ∈ C and x† ∈ VI(C, M), one has 〈Mx†, yn − x†〉 ≥ 0, which combined with the
pseudo-monotonicity of M yields 〈Myn, yn − x†〉 ≥ 0. This means that 〈Myn, zn − x†〉 ≥
〈Myn, zn − yn〉. Hence,

− 2θϑnχn〈Myn, zn − x†〉 ≤ −2θϑnχn〈Myn, zn − yn〉 . (3.10)

Since zn ∈ Tn , we have 〈un − ϑnMun − yn, zn − yn〉 ≤ 0. This shows that

〈un − yn − ϑn(Mun − Myn), zn − yn〉 ≤ ϑn〈Myn, zn − yn〉 . (3.11)

Using (3.10), (3.11), and the definitions of cn and χn , we obtain

−2θϑnχn〈Myn, zn − x†〉 ≤ −2θχn〈cn, zn − yn〉
= −2θχn〈cn, un − yn〉 + 2θχn〈cn, un − zn〉
= −2θχ2

n ‖cn‖2 + 2θχn〈cn, un − zn〉 . (3.12)

Now, we estimate 2θχn〈cn, un − zn〉. According to the basic inequality 2ab = a2 + b2 −
(a − b)2, we also have

2θχn〈cn, un − zn〉 = ‖un − zn‖2 + θ2χ2
n ‖cn‖2 − ‖un − zn − θχncn‖2 . (3.13)

It follows from (3.2) that ‖Mun − Myn‖ ≤ (μ/ϑn+1)‖un − yn‖, ∀n ≥ 1, which combining
with the definition of χn yields that

χn‖cn‖2 = 〈cn, un − yn〉 ≥ ‖un − yn‖2 − ϑn ‖Mun − Myn‖ ‖un − yn‖
≥

(
1 − μϑn

ϑn+1

)
‖un − yn‖2 .

This together with the fact that ‖cn‖ ≤ (1 + μϑn/ϑn+1)‖un − yn‖ implies

χ2
n ‖cn‖2 ≥

(
1 − μϑn

ϑn+1

)2 ‖un − yn‖4
‖cn‖2 ≥

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 . (3.14)

Combining (3.9), (3.12), (3.13) and (3.14), we conclude that

‖zn − x†‖2 ≤ ‖un − x†‖2 − ‖un − zn − θχncn‖2 − θ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 .

This completes the proof. ��
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Theorem 3.1 Suppose that Assumptions (C1)–(C4) hold. Then the sequence {xn} formed by
Algorithm 3.1 converges to x† ∈ VI(C, M) in norm,where ‖x†‖ = min{‖z‖ : z ∈ VI(C, M)}.
Proof For convenience, we divide the proof into four claims.
Claim 1. The sequence {xn} is bounded. Indeed, thanks to Lemma 3.4, one has

‖zn − x†‖ ≤ ‖un − x†‖, ∀n ≥ 1 . (3.15)

From the definition of un , one sees that

‖un − x†‖ ≤ ‖xn − x†‖ + σn · τn

σn
‖xn − xn−1‖ . (3.16)

According to Remark 3.2, we have τn
σn

‖xn − xn−1‖ → 0 as n → ∞. Therefore, there exists
a constant Q1 > 0 such that

τn

σn
‖xn − xn−1‖ ≤ Q1, ∀n ≥ 1 ,

which together with (3.15) and (3.16) implies that

‖zn − x†‖ ≤ ‖un − x†‖ ≤ ‖xn − x†‖ + σnQ1, ∀n ≥ 1 . (3.17)

By the definition of xn+1, one obtains

‖xn+1 − x†‖ ≤ ‖(1 − σn − ϕn)(un − x†) + ϕn(zn − x†)‖ + σn‖x†‖ . (3.18)

It follows from (3.15) that

‖(1 − σn − ϕn)(un − x†) + ϕn(zn − x†)‖2
≤ (1 − σn − ϕn)

2‖un − x†‖2 + 2(1 − σn − ϕn)ϕn‖zn − x†‖‖un − x†‖ + ϕ2
n‖zn − x†‖2

≤ (1 − σn − ϕn)
2‖un − x†‖2 + 2(1 − σn − ϕn)ϕn‖un − x†‖2 + ϕ2

n‖un − x†‖2
= (1 − σn)

2‖un − x†‖2 ,

which yields

‖(1 − σn − ϕn)(un − x†) + ϕn(zn − x†)‖ ≤ (1 − σn)‖un − x†‖ . (3.19)

Using (3.17), (3.18) and (3.19), we deduce that

‖xn+1 − x†‖ ≤ (1 − σn)‖un − x†‖ + σn‖x†‖
≤ (1 − σn)‖xn − x†‖ + σn(‖x†‖ + Q1)

≤ max{‖xn − x†‖, ‖x†‖ + Q1}
≤ · · · ≤ max{‖x0 − x†‖, ‖x†‖ + Q1} .

That is, the sequence {xn} is bounded. So the sequences {un}, {yn} and {zn} are also bounded.
Claim 2.

ϕn‖un − zn − θχncn‖2 + ϕnθ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2

≤ ‖xn − x†‖2 − ‖xn+1 − x†‖2 + σn(‖x†‖2 + Q2)

for some Q2 > 0. Indeed, from (3.17), one sees that
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‖un − x†‖2 ≤ (‖xn − x†‖ + σnQ1)
2

= ‖xn − x†‖2 + σn(2Q1‖xn − x†‖ + σnQ
2
1)

≤ ‖xn − x†‖2 + σnQ2 (3.20)

for some Q2 > 0. By the definition of xn+1 and Assumption (C4), we find that

‖xn+1 − x†‖2 = ‖(1 − σn − ϕn)(un − x†) + ϕn(zn − x†) + σn(−x†)‖2
= (1 − σn − ϕn)‖un − x†‖2 + ϕn‖zn − x†‖2 + σn‖x†‖2

− ϕn(1 − σn − ϕn)‖un − zn‖2 − σn(1 − σn − ϕn)‖un‖2 − σnϕn‖zn‖2
≤ (1 − σn − ϕn)‖un − x†‖2 + ϕn‖zn − x†‖2 + σn‖x†‖2 .

(3.21)
Thus, using Lemma 3.4, (3.20) and (3.21), we obtain

‖xn+1 − x†‖2 ≤ (1 − σn − ϕn)‖un − x†‖2 + ϕn‖un − x†‖2 − ϕn‖un − zn − θχncn‖2

− ϕnθ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 + σn‖x†‖2

≤ ‖xn − x†‖2 − ϕn‖un − zn − θχncn‖2

− ϕnθ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 + σn(‖x†‖2 + Q2) .

The desired result can be achieved by a simple conversion.
Claim 3.

‖xn+1 − x†‖2 ≤ (1 − σn)‖xn − x†‖2 + σn
[
2ϕn‖un − zn‖‖xn+1 − x†‖

+ 2〈x†, x† − xn+1〉 + 3Qτn

σn
‖xn − xn−1‖

]

for some Q > 0. Indeed, from the definition of un , we can write

‖un − x†‖2 ≤ ‖xn − x†‖2 + 2τn‖xn − x†‖‖xn − xn−1‖ + τ 2n ‖xn − xn−1‖2
≤ ‖xn − x†‖2 + 3Qτn‖xn − xn−1‖ , (3.22)

where Q := supn∈N{‖xn − x†‖, τ‖xn − xn−1‖} > 0. Set tn = (1− ϕn)un + ϕnzn , it follows
from (3.15) that

‖tn − x†‖ = ‖(1 − ϕn)(un − x†) + ϕn(zn − x†)‖
≤ (1 − ϕn)‖un − x†‖ + ϕn‖un − x†‖ = ‖un − x†‖ . (3.23)
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From (3.22) and (3.23), we obtain

‖xn+1 − x†‖2 = ‖(1 − ϕn)un + ϕnzn − σnun − x†‖2
= ‖(1 − σn)(tn − x†) − σn(un − tn) − σnx

†‖2
≤ (1 − σn)

2‖tn − x†‖2 − 2σn〈un − tn + x†, xn+1 − x†〉
= (1 − σn)

2‖tn − x†‖2 + 2σn〈un − tn, x
† − xn+1〉 + 2σn〈x†, x† − xn+1〉

≤ (1 − σn)‖tn − x†‖2 + 2σn‖un − tn‖‖xn+1 − x†‖ + 2σn〈x†, x† − xn+1〉
≤ (1 − σn)‖xn − x†‖2 + σn

[
2ϕn‖un − zn‖‖xn+1 − x†‖

+ 2〈x†, x† − xn+1〉 + 3Qτn

σn
‖xn − xn−1‖

]
.

Claim 4. The sequence {‖xn − x†‖2} converges to zero. From now on, we always assume
that {‖xnk − x†‖} is a subsequence of {‖xn − x†‖} such that lim infk→∞(‖xnk+1 − x†‖ −
‖xnk − x†‖) ≥ 0. Then,

lim inf
k→∞

(‖xnk+1 − x†‖2 − ‖xnk − x†‖2)

= lim inf
k→∞

[
(‖xnk+1 − x†‖ − ‖xnk − x†‖)(‖xnk+1 − x†‖ + ‖xnk − x†‖)] ≥ 0 .

By Claim 2 and Assumption (C4), we observe that

ϕnk θ(2 − θ)

(
1 − μϑnk

ϑnk+1

)2

(
1 + μϑnk

ϑnk+1

)2 ‖unk − ynk‖2 + ϕnk‖unk − znk − θχnk cnk‖2

≤ lim sup
k→∞

[‖xnk − x†‖2 − ‖xnk+1 − x†‖2] + lim sup
k→∞

σnk
(‖x†‖2 + Q2

)

= − lim inf
k→∞

[‖xnk+1 − x†‖2 − ‖xnk − x†‖2] ≤ 0 ,

which implies that

lim
k→∞ ‖ynk − unk‖ = 0 and lim

k→∞ ‖unk − znk − θχnk cnk‖ = 0 .

From the definition of χnk , we obtain

‖unk − znk‖ ≤ ‖unk − znk − θχnk cnk‖ + θχnk‖cnk‖
= ‖unk − znk − θχnk cnk‖ + θ

〈unk − ynk , cnk 〉
‖cnk‖

≤ ‖unk − znk − θχnk cnk‖ + θ‖unk − ynk‖ .

Hence, we obtain that limk→∞ ‖znk − unk‖ = 0. This together with the boundedness of {xn}
yields that

lim
k→∞ ϕnk‖unk − znk‖‖xnk+1 − x†‖ = 0 . (3.24)

Moreover, using Remark 3.2 and Assumption (C4), we have

‖xnk+1 − unk‖ = σnk‖unk‖ + ϕnk‖znk − unk‖ → 0 ,

‖xnk − unk‖ = σnk · τnk

σnk
‖xnk − xnk−1‖ → 0 .
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From the above facts, we conclude that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − unk‖ + ‖unk − xnk‖ → 0 . (3.25)

Since the sequence {xnk } is bounded, there exists a subsequence {xnk j } of {xnk } such that
xnk j ⇀z. Furthermore,

lim sup
k→∞

〈x†, x† − xnk 〉 = lim
j→∞〈x†, x† − xnk j 〉 = 〈x†, x† − z〉 . (3.26)

We obtain that unk⇀z since ‖xnk − unk‖ → 0. This together with limk→∞ ‖unk − ynk‖ = 0
and Lemma 3.3 implies that z ∈ VI(C, M). From the definition of x† and (3.26), we obtain

lim sup
k→∞

〈x†, x† − xnk 〉 = 〈x†, x† − z〉 ≤ 0 . (3.27)

Combining (3.25) and (3.27), we find that

lim sup
k→∞

〈x†, x† − xnk+1〉 ≤ lim sup
k→∞

〈x†, x† − xnk 〉 ≤ 0 . (3.28)

Thus, combining Assumption (C4), Remark 3.2, (3.24), (3.28) and Claim 3, in the light of
Lemma 2.2, we conclude that xn → x† as n → ∞, which is the desired result. ��

3.2 The first viscosity-type inertial subgradient extragradient algorithm

In this subsection, we introduce a viscosity-type inertial projection and contraction sub-
gradient extragradient method. First, we use the following Assumption (C5) to replace the
Assumption (C4) described in Sect. 3.

(C5) Let f : H → H be a κ-contraction mapping with κ ∈ [0, 1). Let {εn} and {ξn} be
two nonnegative sequences such that limn→∞ εn

σn
= 0 and

∑∞
n=1 ξn < +∞, where

{σn} ⊂ (0, 1) satisfies limn→∞ σn = 0 and
∑∞

n=1 σn = ∞.

The Algorithm 3.2 is of the following form.

Algorithm 3.2 The first viscosity-type inertial subgradient extragradient algorithm
Initialization: Take τ > 0, μ ∈ (0, 1), ϑ1 > 0, θ ∈ (0, 2). Let x0, x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = xn + τn
(
xn − xn−1

)
,

yn = PC (un − ϑnMun) ,

zn = PTn (un − θϑnχnMyn) ,

Tn = {x ∈ H | 〈un − ϑnMun − yn , x − yn〉 ≤ 0} ,

xn+1 = σn f (xn) + (1 − σn) zn ,

where {τn}, {ϑn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively.

Theorem 3.2 Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn}
constructed by Algorithm 3.2 converges to x† ∈ VI(C, M) in norm, where x† = PVI(C,M) ◦
f (x†).
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Proof As in the proof of Theorem 3.1, we also prove it in four steps.
Claim 1. The sequence {xn} is bounded. Using the definition of xn+1 and (3.17), we obtain

‖xn+1 − x†‖ = ‖σn( f (xn) − x†) + (1 − σn)(zn − x†)‖
≤ σn‖ f (xn) − f (x†)‖ + σn‖ f (x†) − x†‖ + (1 − σn)‖zn − x†‖
≤ σnκ‖xn − x†‖ + σn‖ f (x†) − x†‖ + (1 − σn)‖zn − x†‖

≤ (1 − (1 − κ)σn)‖xn − x†‖ + (1 − κ)σn
Q1 + ‖ f (x†) − x†‖

1 − κ

≤ max
{‖xn − x†‖, Q1 + ‖ f (x†) − x†‖

1 − κ

}

≤ · · · ≤ max
{‖x0 − x†‖, Q1 + ‖ f (x†) − x†‖

1 − κ

}
.

This implies that the sequence {xn} is bounded. We also get that the sequences {un}, {zn} and
{ f (xn)} are bounded.
Claim 2.

(1 − σn)θ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 + (1 − σn)‖un − zn − θχncn‖2

≤ ‖xn − x†‖2 − ‖xn+1 − x†‖2 + σnQ4

for some Q4 > 0. Combining Lemma 3.4 and (3.20), we see that

‖xn+1 − x†‖2 ≤ σn
(‖ f (xn) − f (x†)‖ + ‖ f (x†) − x†‖)2 + (1 − σn)‖zn − x†‖2

≤ σn
(‖xn − x†‖ + ‖ f (x†) − x†‖)2 + (1 − σn)‖zn − x†‖2

= σn‖xn − x†‖2 + (1 − σn)‖zn − x†‖2
+ σn

(
2‖xn − x†‖ · ‖ f (x†) − x†‖ + ‖ f (x†) − x†‖2)

≤ σn‖xn − x†‖2 + (1 − σn)‖zn − x†‖2 + σnQ3

≤ ‖xn − x†‖2 − (1 − σn)‖un − zn − θχncn‖2

− (1 − σn)θ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 + σnQ4 ,

where Q4 := Q2 + Q3. The desired result can be delivered by a simple conversion.
Claim 3.

‖xn+1 − x†‖2 ≤ (1 − (1 − κ)σn)‖xn − x†‖2 + (1 − κ)σn ·
[ 3Q

1 − κ
· τn

σn
‖xn − xn−1‖

+ 2

1 − κ
〈 f (x†) − x†, xn+1 − x†〉

]
.
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Using (3.15) and (3.22), we obtain

‖xn+1 − x†‖2 = ‖σn( f (xn) − f (x†)) + (1 − σn)(zn − x†) + σn( f (x
†) − x†)‖2

≤ ‖σn( f (xn) − f (x†)) + (1 − σn)(zn − x†)‖2 + 2σn〈 f (x†) − x†, xn+1 − x†〉
≤ σn‖ f (xn) − f (x†)‖2 + (1 − σn)‖zn − x†‖2 + 2σn〈 f (x†) − x†, xn+1 − x†〉
≤ σnκ‖xn − x†‖2 + (1 − σn)‖un − x†‖2 + 2σn〈 f (x†) − x†, xn+1 − x†〉
≤ (1 − (1 − κ)σn)‖xn − x†‖2 + (1 − κ)σn ·

[ 3Q

1 − κ
· τn

σn
‖xn − xn−1‖

+ 2

1 − κ
〈 f (x†) − x†, xn+1 − x†〉

]
.

Claim 4. The sequence {‖xn − x†‖2} converges to zero. By Claim 2 and Assumption (C5),
we observe that

(1 − σnk )θ(2 − θ)

(
1 − μϑnk

ϑnk+1

)2

(
1 + μϑnk

ϑnk+1

)2 ‖unk − ynk‖2 + (1 − σnk )‖unk − znk − θχnk cnk‖2

≤ lim sup
k→∞

[‖xnk − x†‖2 − ‖xnk+1 − x†‖2 + σnk Q4
] ≤ 0 ,

which implies that

lim
k→∞ ‖ynk − unk‖ = 0 and lim

k→∞ ‖unk − znk − θχnk cnk‖ = 0 .

As stated in Claim 4 of Theorem 3.1, it is easy to see that limk→∞ ‖znk −unk‖ = 0.Moreover,
using Remark 3.2 and Assumption (C5), we have

‖xnk+1 − znk‖ = σnk‖znk − f (xnk )‖ → 0 ,

‖xnk − unk‖ = σnk · τnk

σnk
‖xnk − xnk−1‖ → 0 .

It follows that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk‖ + ‖znk − unk‖ + ‖unk − xnk‖ → 0 . (3.29)

Since the sequence {xnk } is bounded, there exists a subsequence {xnk j } of {xnk } such that
xnk j ⇀z. Furthermore,

lim sup
k→∞

〈 f (x†) − x†, xnk − x†〉 = lim
j→∞〈 f (x†) − x†, xnk j − x†〉 = 〈 f (x†) − x†, z − x†〉 .

(3.30)
We obtain that unk⇀z since ‖xnk −unk‖ → 0. This, together with limk→∞ ‖unk − ynk‖ = 0
and Lemma 3.3, obtains that z ∈ VI(C, M). From the definition of x† and (3.30), we obtain

lim sup
k→∞

〈 f (x†) − x†, xnk − x†〉 = 〈 f (x†) − x†, z − x†〉 ≤ 0 . (3.31)
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Combining (3.29) and (3.31), we obtain

lim sup
k→∞

〈 f (x†) − x†, xnk+1 − x†〉 ≤ lim sup
k→∞

〈 f (x†) − x†, xnk − x†〉 ≤ 0 . (3.32)

Thus, from Assumption (C5), Remark 3.2, (3.32) and Claim 3, in the light of Lemma 2.2,
we conclude that xn → x† as n → ∞. The proof of the Theorem 3.2 is now complete. ��

3.3 The second viscosity-type inertial subgradient extragradient algorithm

In this subsection, we introduce another viscosity-type iterative scheme that is different from
Algorithm 3.2. The details of this scheme are described in Algorithm 3.3.

Algorithm 3.3 The second viscosity-type inertial subgradient extragradient algorithm
Initialization: Take τ > 0, μ ∈ (0, 1), ϑ1 > 0, θ ∈ (0, 2). Let x0, x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = xn + τn
(
xn − xn−1

)
,

yn = PC (un − ϑnMun) ,

zn = PTn (un − θϑnχnMyn) ,

Tn = {x ∈ H | 〈un − ϑnMun − yn , x − yn〉 ≤ 0} ,

xn+1 = σn f (zn) + (1 − σn) zn ,

where {τn}, {ϑn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively.

Theorem 3.3 Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn}
collected by Algorithm 3.3 converges to x† ∈ VI(C, M) in norm, where x† = PVI(C,M) ◦
f (x†).

Proof The proof of this theorem is very similar to Theorem 3.2. We also separate it into four
steps.
Claim 1. The sequence {xn} is bounded. Using the definition of xn+1 and (3.17), we obtain

‖xn+1 − x†‖ ≤ σn‖ f (zn) − f (x†)‖ + σn‖ f (x†) − x†‖ + (1 − σn)‖zn − x†‖

≤ (1 − (1 − κ)σn)‖xn − x†‖ + (1 − κ)σn
Q1 + ‖ f (x†) − x†‖

1 − κ

≤ max
{‖x0 − x†‖, Q1 + ‖ f (x†) − x†‖

1 − κ

}
.

This indicates that the sequence {xn} is bounded. We also get that the sequences {un}, {zn}
and { f (zn)} are bounded.
Claim 2.

θ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 + ‖un − zn − θχncn‖2

≤ ‖xn − x†‖2 − ‖xn+1 − x†‖2 + σnQ6
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for some Q6 > 0. Combining Lemma 3.4 and (3.20), we find that

‖xn+1 − x†‖2 ≤ σn(‖zn − x†‖ + ‖ f (x†) − x†‖)2 + (1 − σn)‖zn − x†‖2
= σn‖zn − x†‖2 + (1 − σn)‖zn − x†‖2

+ σn
(
2‖zn − x†‖ · ‖ f (x†) − x†‖ + ‖ f (x†) − x†‖2)

≤ ‖zn − x†‖2 + σnQ5

≤ ‖xn − x†‖2 − ‖un − zn − θχncn‖2

− θ(2 − θ)

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 + σnQ6 ,

where Q6 := Q2 + Q5. The desired result can be delivered by a simple conversion.
Claim 3.

‖xn+1 − x†‖2 ≤ (1 − (1 − κ)σn)‖xn − x†‖2 + (1 − κ)σn ·
[ 3Q

1 − κ
· τn

σn
‖xn − xn−1‖

+ 2

1 − κ
〈 f (x†) − x†, xn+1 − x†〉

]
.

Using (3.15) and (3.22), we have

‖xn+1 − x†‖2 = ‖σn( f (zn) − f (x†)) + (1 − σn)(zn − x†) + σn( f (x
†) − x†)‖2

≤ σnκ‖zn − x†‖2 + (1 − σn)‖zn − x†‖2 + 2σn〈 f (x†) − x†, xn+1 − x†〉
≤ (1 − (1 − κ)σn)‖xn − x†‖2 + (1 − κ)σn ·

[ 3Q

1 − κ
· τn

σn
‖xn − xn−1‖

+ 2

1 − κ
〈 f (x†) − x†, xn+1 − x†〉

]
.

Claim4.The sequence {‖xn−x†‖2} converges to zero. This conclusion can be easily obtained
by inferences similar to Claim 4 of Theorem 3.2. This completes the proof. ��

In the next part, we will introduce three new simple numerical methods that only need to
calculate the projection once in each iteration.

3.4 ThemodifiedMann-type inertial projection and contraction algorithm

Our first modified iterative process is stated in Algorithm 3.4. Compared with Algorithm 3.1,
the calculation of the iterative sequence {zn} replaces the projection on the half-space with a
display formula.

The following lemma plays an important role in studying the convergence of the algo-
rithms.

Lemma 3.5 Suppose that Assumption (C3) holds. Let {zn} and {un} be two sequences pro-
duced by Algorithm 3.4. Then, for all x† ∈ VI(C, M),

‖zn − x†‖2 ≤ ‖un − x†‖2 − 2 − θ

θ
‖un − zn‖2 ,

and

‖un − yn‖2 ≤
(
1 + μϑn

ϑn+1

)2

[
(1 − μϑn

ϑn+1
)θ

]2 ‖un − zn‖2 .
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Algorithm 3.4 The modified Mann-type inertial projection and contraction algorithm
Initialization: Take τ > 0, μ ∈ (0, 1), ϑ1 > 0, θ ∈ (0, 2). Let x0, x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn + τn
(
xn − xn−1

)
,

yn = PC (un − ϑnMun) ,

zn = un − θχncn ,

xn+1 = (1 − σn − ϕn)un + ϕnzn ,

where {τn}, {ϑn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively.

Proof By using the definition of zn , one obtains

‖zn − x†‖2 = ‖un − θχncn − x†‖2
= ‖un − x†‖2 − 2θχn〈un − x†, cn〉 + θ2χ2

n ‖cn‖2 .
(3.33)

According to the definition of cn , one sees that

〈un − x†, cn〉 = 〈un − yn, cn〉 + 〈yn − x†, cn〉
= 〈un − yn, cn〉 + 〈yn − x†, un − yn − ϑn(Mun − Myn)〉 .

(3.34)

From yn = PC(un − ϑnMun) and the property of projection, we have

〈un − yn − ϑnMun, yn − x†〉 ≥ 0 . (3.35)

Using x† ∈ VI(C, M) and yn ∈ C, we obtain that 〈Mx†, yn − x†〉 ≥ 0, which combined with
the pseudomonotonicity of M yields that

ϑn〈Myn, yn − x†〉 ≥ 0 . (3.36)

By using (3.34), (3.35) and (3.36), we obtain

〈un − x†, cn〉 ≥ 〈un − yn, cn〉 . (3.37)

It follows from the definition of zn that zn −un = θχncn . From the definition of χn , one gets
〈un − yn, cn〉 = χn‖cn‖2. Combining (3.33) and (3.37), we conclude that

‖zn − x†‖2 ≤ ‖un − x†‖2 − 2θχn〈un − yn, cn〉 + θ2χ2
n ‖cn‖2

= ‖un − x†‖2 − 2θχ2
n ‖cn‖2 + θ2χ2

n ‖cn‖2

= ‖un − x†‖2 − 2 − θ

θ
‖θχncn‖2

= ‖un − x†‖2 − 2 − θ

θ
‖un − zn‖2 .

On the other hand, by the definition of zn and (3.14), we have

‖zn − un‖2 = θ2χ2
n ‖cn‖2 ≥ θ2

(
1 − μϑn

ϑn+1

)2

(
1 + μϑn

ϑn+1

)2 ‖un − yn‖2 .

Thus, we obtain

‖un − yn‖2 ≤
(
1 + μϑn

ϑn+1

)2

[
(1 − μϑn

ϑn+1
)θ

]2 ‖un − zn‖2 .

123



Journal of Global Optimization (2022) 82:523–557 541

The proof of the lemma is now complete. ��
Theorem 3.4 Suppose that Assumptions (C1)–(C4) hold. Then the sequence {xn} generated
by Algorithm 3.4 converges to x† ∈ VI(C, M) in norm, where ‖x†‖ = min{‖z‖ : z ∈
VI(C, M)}.
Proof As we did before, we state the proof into four steps.
Claim 1. The sequence {xn} is bounded. Indeed, thanks to Lemma 3.5 and θ ∈ (0, 2), we
have

‖zn − x†‖ ≤ ‖un − x†‖, ∀n ≥ 1 . (3.38)

Using the same facts as stated in Claim 1 of Theorem 3.1, we obtain that the sequences {xn},
{un}, {yn} and {zn}are bounded.
Claim 2.

ϕn
2 − θ

θ
‖un − zn‖2 ≤ ‖xn − x†‖2 − ‖xn+1 − x†‖2 + σn

(‖x†‖2 + Q2
)
.

By using Lemma 3.5, (3.20) and (3.21), we obtain

‖xn+1 − x†‖2 ≤ (1 − σn − ϕn)‖un − x†‖2 + ϕn‖zn − x†‖2 + σn‖x†‖2

≤ (1 − σn − ϕn)‖un − x†‖2 + ϕn‖un − x†‖2 − ϕn
2 − θ

θ
‖un − zn‖2 + σn‖x†‖2

≤ ‖xn − x†‖2 − ϕn
2 − θ

θ
‖un − zn‖2 + σn

(‖x†‖2 + Q2
)
.

The desired result can be achieved by a simple conversion.
Claim 3.

‖xn+1 − x†‖2 ≤ (1 − σn)‖xn − x†‖2 + σn

[
2ϕn‖un − zn‖‖xn+1 − x†‖

+ 2〈x†, x† − xn+1〉 + 3Qτn

σn
‖xn − xn−1‖

]
.

The result can be obtained by using the same facts as declared in Claim 3 of Theorem 3.1.
Claim 4. The sequence {‖xn − x†‖2} converges to zero. By Claim 2 and Assumption (C4),
we have

ϕnk
2 − θ

θ
‖unk − znk‖2 ≤ lim sup

k→∞
[‖xnk − x†‖2 − ‖xnk+1 − x†‖2 + σnk (‖x†‖2 + Q2)

]

≤ 0 ,

which implies that limk→∞ ‖znk − unk‖ = 0. In view of Lemma 3.5, we observe that
limk→∞ ‖ynk − unk‖ = 0. As asserted in Claim 4 of Theorem 3.1, we can obtain the same
result as (3.24)–(3.28). Therefore, we obtain that xn → x† as n → ∞. This completes the
proof. ��

3.5 The first modified viscosity-type inertial projection and contraction algorithm

By replacing the calculation process of the iterative sequence {zn} in Algorithm 3.2, we
obtain the following Algorithm 3.5.

Theorem 3.5 Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn}
designed by Algorithm 3.5 converges to x† ∈ VI(C, M) in norm, where x† = PVI(C,M) ◦
f (x†).
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Algorithm 3.5 The first modified viscosity-type inertial projection and contraction algorithm
Initialization: Take τ > 0, μ ∈ (0, 1), ϑ1 > 0, θ ∈ (0, 2). Let x0, x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn + τn
(
xn − xn−1

)
,

yn = PC (un − ϑnMun) ,

zn = un − θχncn ,

xn+1 = σn f (xn) + (1 − σn) zn ,

where {τn}, {ϑn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively.

Proof The proof of this theorem is very similar to Theorem 3.2. We divide it into four steps.
Claim 1. The sequence {xn} is bounded. Using the same arguments as declared in Claim 1 of
Theorem 3.2, we obtain that the sequences {xn}, {un}, {yn}, {zn} and { f (xn)} are bounded.
Claim 2.

(1 − σn)
2 − θ

θ
‖un − zn‖2 ≤ ‖xn − x†‖2 − ‖xn+1 − x†‖2 + σnQ4 .

In view of Lemma 3.5 and (3.20), we have

‖xn+1 − x†‖2 = ‖σn( f (xn) − x†) + (1 − σn)(zn − x†)‖2
≤ σn‖ f (xn) − x†‖2 + (1 − σn)‖zn − x†‖2
= σn

(‖ f (xn) − f (x†)‖ + ‖ f (x†) − x†‖)2 + (1 − σn)‖zn − x†‖2
≤ σn‖xn − x†‖2 + (1 − σn)‖zn − x†‖2

+ σn
(
2‖xn − x†‖ · ‖ f (x†) − x†‖ + ‖ f (x†) − x†‖2)

≤ σn‖xn − x†‖2 + (1 − σn)‖zn − x†‖2 + σnQ3

≤ ‖xn − x†‖2 − (1 − σn)
2 − θ

θ
‖un − zn‖2 + σnQ4 ,

where Q4 := Q2 + Q3. The desired result can be gained through a simple conversion.
Claim 3.

‖xn+1 − x†‖2 ≤ (1 − (1 − κ)σn)‖xn − x†‖2 + (1 − κ)σn ·
[ 3Q

1 − κ
· τn

σn
‖xn − xn−1‖

+ 2

1 − κ
〈 f (x†) − x†, xn+1 − x†〉

]
.

The result can be achieved by using the same facts as stated in Claim 3 of Theorem 3.2.
Claim 4. The sequence {‖xn − x†‖2} converges to zero. By Claim 2 Assumption (C5), one
has

(1 − σnk )
2 − θ

θ
‖unk − znk‖2 ≤ 0 ,

which indicates that limk→∞ ‖znk − unk‖ = 0. This together with Lemma 3.5 finds that
limk→∞ ‖ynk − unk‖ = 0. As stated in Claim 4 of Theorem 3.2, we can get the same facts
as (3.29)–(3.32). Therefore, we obtain xn → x† as n → ∞. The proof is completed. ��
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3.6 The secondmodified viscosity-type inertial projection and contraction
algorithm

Our last iteration scheme is depicted in Algorithm 3.6.

Algorithm 3.6 The second modified viscosity-type inertial projection and contraction algo-
rithm
Initialization: Take τ > 0, μ ∈ (0, 1), ϑ1 > 0, θ ∈ (0, 2). Let x0, x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn + τn
(
xn − xn−1

)
,

yn = PC (un − ϑnMun) ,

zn = un − θχncn ,

xn+1 = σn f (zn) + (1 − σn) zn ,

where {τn}, {ϑn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively.

Theorem 3.6 Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn}
determined by Algorithm 3.6 converges to x† ∈ VI(C, M) in norm, where x† = PVI(C,M) ◦
f (x†).

Proof Combining the proofs of Theorems 3.3 and 3.5, we can easily get the desired conclu-
sion. This part is left to the reader to verify. ��
Remark 3.4 As shown in Table 1, we compare the suggested iterative schemes with some
known algorithms in the literature.

The six algorithms obtained in this paper directly improve some recent results in [7,11,
13,15,28,31,32,36–38,42] based on the following observations:

(i) We investigated and confirmed the strong convergence of the proposed algorithms,
while the algorithms suggested by Dong et al. [11,13], Shehu and Iyiola [32] and

Table 1 Compare the proposed iterative schemes with some known algorithms

Algorithms Operator Inertial Stepsize Convergence

Our Algorithms 3.1–3.6 Pseudomonotone Yes Non-monotonic Strong

[7, Algorithm 3.1] Pseudomonotone Yes Fixed Strong

[11, Algorithm 3.1] Monotone No Armijo-like Weak

[13, Algorithm 3.1] Monotone Yes Fixed Weak

[15, Algorithms 3.1 and 3.2] Monotone No Armijo-like Strong

[28, Algorithm 3.1] Monotone No Armijo-like Strong

[31, Algorithm 4.3] Pseudomonotone No Fixed Strong

[32, Algorithm 2] Pseudomonotone Yes Self-adaptive Weak

[36, Algorithms 3.1 and 3.2] Monotone No Self-adaptive Strong

[37, Algorithms 3.1 and 3.2] Monotone No Armijo-like Strong

[38, Algorithm 1] Monotone Yes Fixed Strong

[42, Algorithm 3.1] Pseudomonotone Yes Self-adaptive Weak
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Yang [42] converge weakly to a solution of VIP in infinite-dimensional Hilbert spaces.
Many problems in applied sciences indicate that strong convergence is better than weak
convergence in an infinite-dimensional space.

(ii) The algorithms proposed by Cholamjiak et al. [7], Dong et al. [13], Shehu et al. [31]
and Thong et al. [38] use a fixed step size in each iteration, which indicates that the
Lipschitz constant of the cost mapping must need to be received in advance. In practical
large-scale nonlinear optimization problems, the Lipschitz constant is not easy to obtain
or requires more calculation to estimate. On the other hand, the algorithms suggested
in [11,15,28,37] require more execution time because they use an Armijo-like step size
criteria. Furthermore, the algorithms proposed in [32,36,42] use a non-increasing step
size and may depend on the choice of initial step size, which will affect the efficiency
of the algorithms. However, our algorithms use a new non-monotonic step size criteria
to automatically update the iteration step size, which makes them more intelligent in
applications.

(iii) The inertial method is used bymany scholars as an acceleration technique. Many works
of literature show that this technique can speed up the convergence speed of themethods
used. The iterative schemes devised in this paper combined inertial terms, which also
accelerate the convergence speed of the algorithms without inertial terms in [15,37]
(see the numerical experiments in Sects. 5 and 6).

(iv) The algorithms presented in [11,13,15,28,36–38] will not be available when the map-
ping is not monotone. It is known that there are some mappings that are not monotone,
such as pseudomonotone mappings. Therefore, the algorithms proposed in this study
to solve pseudomonotone VIP are more useful. In addition, the algorithm proposed
by Shehu et al. [31] combines the Halpern-type method to ensure strong convergence,
which makes its convergence speed very slow, while our suggested algorithms have
a faster convergence speed because they use the viscosity-type and the Mann-type
method.

As mentioned above, the approaches established in this paper have competitive advantages
over some known results in the literature and are more desirable in practical applications.

4 Numerical experiments

In this section, we provide some numerical experiments to illustrate the effectiveness of our
proposed iterative schemes and compare them with some known strong convergent algo-
rithms, including the Algorithm 3.1 suggested by Shehu and Iyiola [28] (shortly, SI Alg.
3.1), the Algorithms 3.1 and 3.2 introduced by Thong and Gibali [37] (shortly, TG Algs. 3.1
and 3.2), the Algorithms 3.1 and 3.2 proposed by Gibali et al. [15] (shortly, GTT Algs. 3.1
and 3.2) and the Algorithms 4.3 presented by Shehu et al. [31] (shortly, SDJ Alg. 4.3).We use
the FOM Solver [3] to effectively calculate the projections onto C and Tn . All the programs
are implemented in MATLAB 2018a on a personal computer.

Our parameters are set as follows. For all algorithms, we set σn = 1/(n + 1), ϕn =
0.5(1 − σn) and f (x) = 0.1x . For our proposed algorithms, we take μ = 0.4, ϑ1 = 0.5,
ξn = 1/(n + 1)1.1 and θ = 1.5. In [37, Algorithms 3.1 and 3.2] and [15, Algorithms 3.1
and 3.2], we pick δ = ζ = 0.5, φ = 0.4 and θ = 1.5. Adopt inertial parameters τ = 0.4
and εn = 100/(n + 1)2 in our algorithms. For [28, Algorithm 3.1], we choose ζ = 0.5 and
φ = 0.4. Take fixed step size ϑn = 0.5/L and θ = 1.5 in Shehu et al.’s [31, Algorithms
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Table 2 Numerical results for Example 4.1

Algorithms ςn = 10−2 ςn = 10−3 ςn = 10−4 ςn = 10−5

Iter. CPU Iter. CPU Iter. CPU Iter. CPU

Our Alg. 3.1 69 0.0034 130 0.0071 413 0.0227 1309 0.0842

Our Alg. 3.2 16 0.0010 69 0.0033 237 0.0131 629 0.0388

Our Alg. 3.3 35 0.0025 69 0.0034 237 0.0130 629 0.0490

Our Alg. 3.4 58 0.0026 137 0.0064 433 0.0257 1373 0.0784

Our Alg. 3.5 14 0.0007 116 0.0053 272 0.0126 712 0.0450

Our Alg. 3.6 46 0.0021 117 0.0052 271 0.0126 711 0.0519

TG Alg. 3.1 47 0.0099 290 0.0590 572 0.1216 1808 0.4421

TG Alg. 3.2 22 0.0047 155 0.0310 256 0.0547 811 0.2201

GTT Alg. 3.1 48 0.0105 309 0.0715 590 0.1266 1870 0.4805

GTT Alg. 3.2 24 0.0050 134 0.0331 266 0.0651 842 0.2077

SI Alg. 3.1 24 0.0059 71 0.0358 271 0.0809 854 0.2541

4.3]. We use Dn = ‖xn − x∗‖ to measure the n-th iteration error of all algorithms, where x∗
represents the solution to our problems.

Example 4.1 Our first test example is the nonlinear complementarity problem (NCP) consid-
ered by many researchers. Recall that the NCP is described as follows:

find x∗ ∈ C such that x∗ ≥ 0, Mx∗ ≥ 0 and 〈x∗, Mx∗〉 = 0 .

In fact, NCP is a special case when the constraint of the (VIP) is non-negative, that is, the
feasible set of NCP is C = R

n+. Assume that the mapping M : R4 → R
4 is given by

Mx =

⎛

⎜⎜
⎝

3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x1 + x22 + 10x3 + 2x4 − 2
3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9

x21 + 3x22 + 2x3 + 3x4 − 3

⎞

⎟⎟
⎠ .

The feasible set C is defined by C = {x ∈ R
4+ | x1 + x2 + x3 + x4 = 4}. Since the

Lipschitz constant of the mapping M is unknown, Shehu et al. [31, Algorithms 4.3] will not
participate in the comparison of this example. Moreover, we do not know the exact solution
of the problem, so we use En = ‖un − yn‖2 to measure the error of the n-th iteration
and En < ςn is used as the stopping criterion. According to Lemma 3.2, we obtain that
yn ∈ VI(C, M) when En = 0. The initial values x0, x1 ∈ R

4+ are randomly generated by
MATLAB. Table 2 shows the number of iterations and CPU times in seconds required by
all algorithms under different stopping criteria. An approximate solution to this problem is
x∗ = (1.2404, 0, 0, 2.7553)T by using the proposed algorithms.

Example 4.2 Consider the form of linear operator M : Rm → R
m (m = 10, 30, 60, 100) as

follows: M(x) = Gx + g, where g ∈ R
m and G = BBT + S+ E , matrix B ∈ R

m×m , matrix
S ∈ R

m×m is skew-symmetric, and matrix E ∈ R
m×m is diagonal matrix whose diagonal

terms are non-negative (henceG is positive symmetric definite). We choose the feasible set C
is a box constraint with the form C = [−2, 5]m . It is easy to see thatM is Lipschitz continuous
monotone and its Lipschitz constant L = ‖G‖. In this numerical example, all entries of B, E
are generated randomly in [0, 2] and S is generated randomly in [−2, 2]. Let g = 0. Then
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Fig. 1 Example 4.2 for m = 10

the solution set is x∗ = {0}. The maximum number of iterations 200 as a common stopping
criterion and the initial values x0 = x1 are randomly generated by 5rand(m, 1) in MATLAB.
The numerical results are shown in Fig. 1 and Table 3, where “CPU" in Table 3 indicates the
execution time in seconds for all algorithms.

Example 4.3 We consider an example in the Hilbert space H = L2([0, 1]) associ-
ated with the inner product 〈x, y〉 := ∫ 1

0 x(t)y(t) dt and the induced norm ‖x‖ :=
(
∫ 1
0 |x(t)|2 dt)1/2,∀x, y ∈ H. Let the feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}.

Define an operator M : C → H by

(Mx)(t) =
∫ 1

0

(
x(t) − G(t, s)g(x(s))

)
ds + h(t), t ∈ [0, 1], x ∈ C,

where

G(t, s) = 2tset+s

e
√
e2 − 1

, g(x) = cos x , h(t) = 2tet

e
√
e2 − 1

.

It is known that M is monotone and L-Lipschitz continuous with L = 2 and x∗(t) = {0} is
the solution of the corresponding variational inequality problem. Note that the projection on
C is inherently explicit, that is,

PC(x) =
{ x

‖x‖ , if ‖x‖ > 1 ;
x, if ‖x‖ ≤ 1 .

We choose the maximum number of iterations 50 as the common stopping criterion. The
numerical behaviors of all the algorithms with four starting points x0(t) = x1(t) are reported
in Fig. 2 and Table 4, where “CPU" in Table 4 represents the execution time in seconds for
all algorithms.
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Fig. 2 Example 4.3 for starting points x1(t) = sin(2t)

Table 4 Numerical results for Example 4.3

Algorithms x1(t) = t2 x1(t) = et x1(t) = sin(2t) x1(t) = log(t)

Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 3.1 6.61E−16 29.15 2.08E−15 34.91 1.12E−15 30.65 2.65E−15 29.32

Our Alg. 3.2 1.12E−21 27.53 1.38E−18 34.20 1.99E−21 29.43 3.36E−21 28.53

Our Alg. 3.3 9.36E−22 27.27 2.70E−18 32.51 1.67E−21 27.26 3.49E−21 28.55

Our Alg. 3.4 6.61E−16 26.22 2.08E−15 32.27 1.12E−15 26.04 2.65E−15 27.61

Our Alg. 3.5 1.12E−21 26.34 1.41E−18 31.41 1.99E−21 26.27 3.36E−21 27.55

Our Alg. 3.6 9.36E−22 26.50 1.84E−18 31.63 1.67E−21 26.83 3.49E−21 27.85

TG Alg. 3.1 2.35E−06 35.85 7.84E−06 45.93 3.99E−06 35.03 8.06E−06 38.11

TG Alg. 3.2 2.45E−10 35.14 6.96E−10 44.46 4.13E−10 34.83 8.98E−10 37.97

GTT Alg. 3.1 2.35E−06 34.06 6.87E−06 47.08 3.99E−06 32.58 7.74E−06 37.78

GTT Alg. 3.2 2.45E−10 33.57 4.73E−10 46.13 4.13E−10 32.66 8.20E−10 37.83

SI Alg. 3.1 4.54E−07 46.23 1.11E−06 61.55 7.80E−07 45.01 1.24E−06 49.05

SDJ Alg. 4.3 2.32E−02 21.82 9.13E−02 28.52 3.99E−02 21.43 7.40E−02 23.83

Finally,we consider an example in theHilbert spaceH = l2 := {x = (x1, x2, . . . , xi , . . .) |∑∞
i=1 |xi |2 < +∞} equipped with inner product 〈x, y〉 = ∑∞

i=1 xi yi and induced norm
‖x‖ = √〈x, x〉 for any x, y ∈ H.

Example 4.4 Let C := {x ∈ H : |xi | ≤ 1/i} and β > α > β/2 > 0. Define an operator
M : C → H by Mx = (

β − ‖x‖)x . It can be verified that mapping M is pseudomonotone
on H, (β + 2α)-Lipschitz continuous on C and sequentially weakly continuous on C , but
fails to be monotone onH (see [21, Example 3.1] for more details). In this example, we take
β = 5, α = 3 and H = R

m for different values of m. Thus, the feasible set C is a box
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Fig. 3 Example 4.4 for m = 10, 000

C = {
x ∈ R

m : −1/i ≤ xi ≤ 1/i, i = 1, 2, . . . ,m
}
. It is easy to see that the solution of

the (VIP) is x∗ = {0}. The stopping criterion and the choice of initial values are the same as
in Example 4.2. We compare the suggested algorithms with the Algorithms 4.3 introduced
by Shehu et al. [31] and the Algorithm 3.1 proposed by Cholamjiak et al. [7] (shortly,
CTC Alg. 3.1). Take σn = 1/(n + 1), ϕn = 0.5(1 − σn), τ = 0.4, εn = 100/(n + 1)2,
θ = 1.5 and ϑn = 0.5/L for CTC Alg. 3.1. The numerical results of all algorithms with four
different dimensions are reported in Fig. 3 and Table 5, where “CPU" in Table 5 denotes the
execution time in seconds for all algorithms.

Remark 4.1 From Examples 4.1–4.4, we have the following observations.

(1) It can be seen from Examples 4.1–4.4 that the proposed algorithms are efficient and
robust.

(2) From Tables 2, 3, 4, 5, and Figs. 1, 2, 3, it can be seen that the suggested algorithms are
better than some existing ones [7,15,28,31,37] in terms of execution time and accuracy,
and these results are independent of the size of the dimension and the selection of the
initial values.

(3) It should be pointed out that the Algorithm 3.1 introduced by Cholamjiak et al. [7] and
the Algorithm 4.3 proposed by Shehu et al. [31] use a fixed step size, that is, the update of
step size needs to know the prior information of the Lipschitz constant of the operator M .
However, our suggested algorithms can realize self-adaptive update iteration step size,
whichmeans that our algorithms aremore intelligent andpractical.Moreover, it is obvious
from Figs. 1 and 2 that the proposed algorithms require less execution time and can obtain
higher accuracy under the same stopping criterion than other compared algorithms. The
following two reasons can explain this phenomenon: (1) the recommended algorithms
have embedded inertial terms that can accelerate the algorithms without inertial terms;
(2) the suggestedmethods use a non-monotonic iteration step size without any line search
process, while some Armijo-like line search methods [15,28,37] require more execution
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time because they need to evaluate the value of operator M many times in order to find
a suitable step size in each iteration.

(4) Notice that the operator M in Example 4.4 is pseudo-monotonic rather than monotonic.
In this case the algorithms in the literature [15,28,37] that can only solve monotone varia-
tional inequalities will not be available. Therefore, the algorithms proposed in this paper
for solving pseudomonotone variational inequalities have a broader range of applications.

5 Applications to optimal control problems

In this section, we use the proposed algorithms to solve the variational inequality that occurs
in the optimal control problem. Assume that L2 ([0, T ],Rm) represents the square-integrable
Hilbert space with inner product 〈p, q〉 = ∫ T

0 〈p(t), q(t)〉 dt and norm ‖p‖2 = √〈p, p〉. The
optimal control problem is described as follows:

p∗(t) ∈ Argmin{g(p) | p ∈ V }, t ∈ [0, T ] , (5.1)

where V represents a set of feasible controls composed ofm piecewise continuous functions.
Its form is expressed as follows:

V = {
p(t) ∈ L2

([0, T ],Rm) : pi (t) ∈ [
p−
i , p+

i

]
, i = 1, 2, . . . ,m

}
. (5.2)

In particular, the control p(t) may be a piecewise constant function (bang-bang type). The
terminal objective function has the form

g(p) = �(x(T )) , (5.3)

where � is a convex and differentiable defined on the attainability set.
Assume that the trajectory x(t) ∈ L2([0, T ] satisfies the constraints of the linear differ-

ential equation system:

ẋ(t) = d

dt
x(t) = Q(t)x(t) + W (t)p(t), 0 ≤ t ≤ T , x(0) = x0 , (5.4)

where Q(t) ∈ R
n×n , W (t) ∈ R

n×m are given continuous matrices for every t ∈ [0, T ]. By
the solution of problem (5.1)–(5.4), we mean a control p∗(t) and a corresponding (optimal)
trajectory x∗(t) such that its terminal value x∗(T ) minimizes objective function (5.3). From
the Pontryagin maximum principle, there exists a function s∗ ∈ L2([0, T ] such that the triple
(x∗, s∗, p∗) solves for a.e. t ∈ [0, T ] the system

d

dt
x∗(t) = Q(t)x∗(t) + W (t)p∗(t), x∗(0) = x0 , (5.5)

d

dt
s∗(t) = −Q(t)Ts∗(t), s∗(T ) = ∇�

(
x∗(T )

)
, (5.6)

0 ∈ W (t)Ts∗(t) + NV
(
p∗(t)

)
, (5.7)

where NV (p) is the normal cone to V at p defined by

NV (p) :=
{∅, if p /∈ V ;

{ι ∈ H : 〈ι, q − p〉 ≤ 0,∀q ∈ V }, if p ∈ V .

Denoting Gp(t) := W (t)Ts(t), Khoroshilova [22] showed that Gp is the gradient of the
objective function g. Therefore, system (5.5)–(5.7) is reduced to the variational inequality
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problem 〈
Gp∗, q − p∗〉 ≥ 0, ∀q ∈ V . (5.8)

Recently, there are many approaches to solve the optimal control problem, for example,
see [18,22,24,41]. Note that our Algorithms 3.1–3.6 guarantee strong convergence and do
not require the Lipschitz constant. Furthermore, the addition of inertial terms makes them
converge faster.

For the convenience of numerical computation, we discretize the continuous functions.
Given the mesh size h := T /N , where N is a natural number. We identify any discretized
control pN := (p0, p1, . . . , pN−1) with its piece-wise constant extension:

pN (t) = pi , ∀t ∈ [
ti , ti+1) , ti = ih, i = 0, 1, . . . , N .

Furthermore, we identify the discretized state xN := (x0, x1, . . . , xN ) and co-state sN :=
(s0, s1, . . . , sN ). They have the form of piecewise linear interpolation:

xN (t) = xi + t − ti
h

(xi+1 − xi ) , ∀t ∈ [
ti , ti+1) , i = 0, 1, . . . , N − 1 ,

and

sN (t) = si + ti − t

h
(si−1 − si ) , ∀t ∈ (ti−1, ti

]
, i = N , N − 1, . . . , 1 .

We using the classical Euler discretization method to solve the systems of ODEs (5.5) and
(5.6). Thus, the Euler discretization of the original system (5.1)–(5.4) is given by

minimize �N

(
xN , pN

)

subject to xNi+1 = xNi + h
[
Q (ti ) x

N
i + W (ti ) p

N
i

]
, xN (0) = x0 ,

sNi = sNi+1 + hQ (ti )
T sNi+1, s(N ) = ∇�(xN ) ,

pNi ∈ V .

It is well known that the Euler discretization has the error estimate O(h) [4]. This indicates
that the difference between the discretized solution pN (t) and the original solution p∗(t) is
proportional to themesh size h. That is, there exists a constant K > 0 such that

∥∥pN − p∗∥∥ ≤
Kh.

Next, we present several mathematical examples to illustrate the computational perfor-
mance of all the algorithms. Our parameters are set as follows. For all algorithms, we set
σn = 10−4/(n + 1), ϕn = 0.5(1 − σn), f (x) = 0.1x and θ = 1.5. For the suggested
Algorithms 3.1–3.6, we choose μ = 0.4, ϑ1 = 0.5 and ξn = 0.1/(n + 1)1.1. For TG
Algs. 3.1 and 3.2, GTT Algs. 3.1 and 3.2, and SI Alg. 3.1, we pick the three parameters of
the Armijo-like step size as δ = 1, ζ = 0.5 and φ = 0.4. Take inertial parameters τ = 0.01
and εn = 10−4/(n + 1)2 in the proposed algorithms. The initial controls p0(t) = p1(t) are
randomly generated in [−1, 1], and the stopping criterion is ‖pn+1 − pn‖ ≤ 10−4 or the
maximum number of iterations 1000.
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Fig. 4 Numerical results for Example 5.1

Example 5.1 (Control of a harmonic oscillator, see [25])

minimize x2(3π)

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π] ,
x(0) = 0 ,

p(t) ∈ [−1, 1] .
The exact optimal control of Example 5.1 is known:

p∗(t) =
{

1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ;
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π] .

According to the previous analysis,we know that the gradient∇g of the objective function g in
the optimal control problem is the operatorG in the corresponding variational inequality (5.8).
Recall that∇g : Rn → R

n is called amonotonemapping if (∇g(x)−∇g(y))T(x− y) ≥ 0. It
is easy to see that the gradient of the objective function g = x2(3π) is∇g = [0; 1]. A simple
calculation can verify that∇g is monotonic. Therefore, Example 5.1 can be transformed into
a monotone variational inequality problem (5.8). Consequently, we can use the proposed
algorithms to solve the optimal control problem. Figure 4 shows the approximate optimal
control and the corresponding trajectories of our Algorithm 3.1.

We now consider examples in which the terminal function is not linear.

Example 5.2 (Rocket car [24])

minimize
1

2

(
(x1(5))

2 + (x2(5))
2) ,

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = p(t), ∀t ∈ [0, 5] ,
x1(0) = 6, x2(0) = 1 ,

p(t) ∈ [−1, 1] .
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Fig. 5 Numerical results for Example 5.2

The exact optimal control of Example 5.2 is

p∗ =
{

1, if t ∈ (3.517, 5] ;
−1, if t ∈ (0, 3.517] .

We can show that the gradient ∇g = [x1; x2] of the objective function in Example 5.2
is monotone. The approximate optimal control and the corresponding trajectories of our
Algorithm 3.4 are plotted in Fig. 5.

Example 5.3 (See [5])

minimize − x1(2) + (x2(2))
2 ,

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = p(t), ∀t ∈ [0, 2] ,
x1(0) = 0, x2(0) = 0 ,

p(t) ∈ [−1, 1] .
The exact optimal control of Example 5.3 is

p∗(t) =
{

1, if t ∈ [0, 1.2) ;
−1, if t ∈ (1.2, 2] .

It is easy to check that the gradient of the objective function in Example 5.3 is monotone.
Figure 6 gives the approximate optimal control and the corresponding trajectories of our
Algorithm 3.6.

Finally, the numerical performance of all the algorithms in Examples 5.1–5.3 is shown in
Table 6, where “CPU" in Table 6 stands for the execution time of all algorithms in seconds.

Remark 5.1 From Figs. 4, 5, 6 and Table 6, we know that the suggested algorithms can work
wellwhen the terminal function is linear or nonlinear.Moreover, the step size ofAlgorithm4.3
[31] requires the prior information of the Lipschitz constant of the cost mapping, and our
algorithms can automatically update the iteration step size.
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Fig. 6 Numerical results for Example 5.3

Table 6 Comparison of the number of iterations and execution time of all algorithms in Examples 5.1–5.3

Algorithms Example 5.1 Example 5.2 Example 5.3

Iter. CPU Iter. CPU Iter. CPU

Our Alg. 3.1 201 0.10152 583 0.21901 386 0.13496

Our Alg. 3.2 90 0.04435 286 0.12281 202 0.07001

Our Alg. 3.3 90 0.05974 286 0.11152 202 0.07033

Our Alg. 3.4 134 0.07025 1000 0.40773 846 0.25851

Our Alg. 3.5 60 0.04593 1000 0.32034 431 0.13518

Our Alg. 3.6 60 0.03608 1000 0.32069 431 0.13327

TG Alg. 3.1 202 0.10854 678 0.52515 476 0.21914

TG Alg. 3.2 91 0.06312 348 0.26483 238 0.12423

GTT Alg. 3.1 224 0.09730 1000 1.06640 966 0.59361

GTT Alg. 3.2 101 0.05076 445 0.46242 277 0.17807

SI Alg. 3.1 91 0.05042 289 0.29149 218 0.09755

6 Final remarks

This paper proposed six inertial projection and contractionmethods to solve the pseudomono-
tone and Lipschitz continuous variational inequality problem in real Hilbert spaces. The
advantage of our algorithms is that they do not require the prior knowledge of the Lipschitz
constant of the cost operator. Note that the step size of the iterative schemes suggested in
this paper is non-monotonic. The strong convergence theorems of the proposed schemes are
obtained under some mild conditions. Finally, some numerical experiments and applications
in optimal control problems are provided to illustrate the effectiveness and robustness of our
algorithms over several existing related ones.
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