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Abstract
In this paper, we present four modified inertial projection and contraction methods to
solve the variational inequality problem with a pseudo-monotone and non-Lipschitz
continuous operator in real Hilbert spaces. Strong convergence theorems of the pro-
posed algorithms are establishedwithout the prior knowledge of the Lipschitz constant
of the operator. Several numerical experiments and the applications to optimal con-
trol problems are provided to verify the advantages and efficiency of the proposed
algorithms.
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1 Introduction

Our goal in this paper is to develop some adaptive strongly convergent iterative algo-
rithms to solve variational inequality problems in infinite-dimensional Hilbert spaces.
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Recall that the variational inequality problem is formed as follows:

find x∗ ∈ C such that 〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C . (VIP)

where C is a nonempty, closed, and convex subset of a real Hilbert spaceHwith inner
product 〈·, ·〉 and norm ‖ · ‖, and A : H → H is a nonlinear operator. We denote the
solution set of (VIP) by VI(C, A) and assume that the set is nonempty throughout the
paper. The variational inequality problem has attracted extensive research as one of
the important problems in appliedmathematics, and it can be interconverted with fixed
point problems and split feasibility problems. The variational inequality can be used
as a model for solving many practical problems, such as optimal control problems,
image processing problems, signal recovery problems, and so on; see, e.g., [1–4].

We next recall some known solution methods in the literature for solving varia-
tional inequality problems, which motivate us to develop new iterative algorithms.
Recently, the extragradient method (shortly, EGM) proposed by Korpelevich [5] has
received a lot of attention due to its simple form and easy implementation in numerical
experiments. More precisely, the EGM is a two-step iterative scheme and produces
the following iterative process:

{
sn = PC (xn − λAxn),

xn+1 = PC (xn − λAsn),
(EGM)

where PC is the metric projection ofH onto C defined by PC (x) := argminy∈C {‖x −
y‖} for a point x ∈ H, mapping A is monotone and L-Lipschitz continuous, and fixed
step size λ is in (0, 1/L). It is noted that the drawback of the EGM is the computational
effort due to the fact that it needs to compute the projection on the feasible set twice
in each iteration. It is known that computing the projection is equivalent to an optimal
distance problem. The corresponding optimization problem may not be easy to solve
when the form of the feasible set is complex. Therefore, how to improve the computa-
tional efficiency of extragradient type methods has become a hot topic of research. In
the past decades, a large number of methods that require computing the projection on
the feasible set only once have been proposed to improve the computational efficiency
of the EGMs, such as the Tseng’s extragradient method introduced by Tseng [6], the
subgradient extragradient method (shortly, SEGM) suggested by Censor, Gibali and
Reich [7–9], and the projection and contraction method (shortly, PCM) presented by
He [10]. We focus on the SEGM and the PCM in this paper. Recall that the SEGM is
described as follows:

{
sn = PC (xn − λAxn),

xn+1 = PHn (xn − λAsn),
(SEGM)

where Hn is defined by

Hn := {x ∈ H | 〈xn − λAxn − sn, x − sn〉 ≤ 0} , (1.1)
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and the fixed step size λ ∈ (0, 1/L). It is worth noting that the projection onto a
half-space Hn can be calculated by an explicit formula. Thus, the SEGM actually
only needs to compute the projection on the feasible set once in each iteration, which
greatly improves the computational efficiency of the EGM.

It is important to note that the EGM uses the same step size in both projection steps
in each iteration, and the SEGM also has this observation. The appropriate choice of
step sizes is very significant for the convergence speed of the algorithm. Indeed, there
is a method that uses two different step sizes in each iteration, called the projection
and contraction method [10]. More precisely, the PCM is expressed in the following
form: {

sn = PC (xn − λn Axn),

xn+1 = xn − τλnσndn,
(PCM)

where τ ∈ (0, 2), λn ∈ (0, 1/L) or {λn} is selected self-adaptively, and

σn := 〈xn − sn, dn〉
‖dn‖2 , dn := xn − sn − λn(Axn − Asn). (1.2)

The numerical experiments given in [11] show that the (PCM) is approximately half
the computational effort of the (EGM). Recently, inspired by the (SEGM) and the
(PCM), Dong et al. [12] introduced a modified subgradient extragradient method
(shortly, MSEGM) using two different step sizes in each iteration to solve the varia-
tional inequality problem. Their method is stated as follows:

{
sn = PC (xn − λn Axn),

xn+1 = PHn (xn − τλnσn Asn),
(MSEGM)

where τ ∈ (0, 2), Hn , and σn are defined in (1.1) and (1.2), respectively. The step size
λn is chosen to be the largest λ ∈ {γ, γ �, γ �2, . . .

}
such that

λ ‖Axn − Asn‖ ≤ φ ‖xn − sn‖ , γ > 0, � ∈ (0, 1), φ ∈ (0, 1). (1.3)

This step size search procedure (1.3) is known as the Armijo step size criterion. Notice
that Algorithm (MSEGM) can work without the prior knowledge of the Lipschitz con-
stant of themapping by applying the step size update criterion (1.3). The computational
efficiency of the proposed algorithm with respect to some previously known schemes
was verified by some numerical experiments.

Notice that Algorithm (MSEGM) is only weakly convergent in an infinite-
dimensional Hilbert space. Many practical applications occurring in machine learning
tell us that strong convergence is preferable to weak convergence in infinite-
dimensional spaces. Recently, combining the (MSEGM), the Mann-type method, and
the viscosity-type method, Thong and Gibali [13] proposed two new strongly conver-
gent algorithms for solving the (VIP) with a monotone operator in real Hilbert spaces.
More precisely, their algorithms are expressed as follows:



   26 Page 4 of 30 B. Tan, X. Qin

⎧⎪⎨
⎪⎩

sn = PC (xn − λn Axn) ,

tn = PHn (xn − τλnσn Asn) ,

xn+1 = (1 − ζn − σn) xn + σntn,

(TG Alg. 3.1)

and ⎧⎪⎨
⎪⎩

sn = PC (xn − λn Axn) ,

tn = PHn (xn − τλnσn Asn) ,

xn+1 = ζn f (xn) + (1 − ζn) tn,

(TG Alg. 3.2)

where τ ∈ (0, 2), Hn is defined in (1.1), λn is generated by (1.3), and σn is defined by

σn := (1 − φ)
‖xn − sn‖2

‖dn‖2 , dn := xn − sn − λn (Axn − Asn) . (1.4)

In addition, Gibali et al. [14] provided two iterative schemes to solve the monotone
variational inequality problem in real Hilbert spaces. The form of their algorithms are
as follows: ⎧⎪⎨

⎪⎩
sn = PC (xn − λn Axn) ,

tn = xn − τσndn,

xn+1 = (1 − ζn − σn) xn + σntn,

(GTT Alg. 3.1)

and ⎧⎪⎨
⎪⎩

sn = PC (xn − λn Axn) ,

tn = xn − τσndn,

xn+1 = ζn f (xn) + (1 − ζn) tn,

(GTT Alg. 3.2)

where τ ∈ (0, 2), λn is generated by (1.3), σn , and dn are defined in (1.4).
Notice that the strong convergence of the algorithms presented in [13,14] is guar-

anteed in the case that mapping A is monotonic. It is known that the class of
pseudo-monotone mappings includes the class of monotone mappings. Due to the
wide range of applications of pseudo-monotone mappings in practice, there has been
a great interest in the pseudo-monotone variational inequality problem and a large
number of iterative algorithms have been proposed to solve it; see, for example, [15–
18] and the references therein. On the other hand, the inertial idea has been studied by
many researchers as a technique to accelerate the convergence speed of algorithms.
A common feature of inertial-type methods is that the next iteration depends on the
combination of the previous two (or more) iterations. Notice that this small change
can improve the convergence speed of algorithms without inertial. Recently, a large
number of numerical methods have been constructed to solve variational inequalities,
split feasibilities, fixed point problems, and other optimization problems; see, e.g.,
[17–23] and the references therein.
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Inspired andmotivated by the above works, in this paper, we propose four new iner-
tial extragradient methods with Armijo step sizes to solve the variational inequality
problem involving a pseudo-monotone operator in real Hilbert spaces. Strong conver-
gence theorems of the proposed algorithms are established under the condition that
the Lipschitz continuity of the operators is not required. Some numerical experiments
are given to verify the computational efficiency of the proposed algorithms.

The remainder of this paper is organized as follows. Some important definitions
and lemmas are reviewed in Sect. 2. Section 3 introduces four new adaptive inertial
extragradient methods and proves their strong convergence.We report some numerical
experiments and applications to optimal control problems in Sect. 4 and conclude the
paper in Sect. 5.

2 Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert space H. The
weak convergence and strong convergence of {xn} to x are represented by xn⇀x and
xn → x , respectively. For each x, y, z ∈ H, we have the following inequalities:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖τ x + β y + λz‖2 = τ‖x‖2 + β‖y‖2 + λ‖z‖2 − τβ‖x − y‖2 − τλ‖x − z‖2 −

βλ‖y − z‖2, where τ, β, λ ∈ [0, 1] with τ + β + λ = 1.

For any x, y ∈ H, a mapping A : H → H is said to be:

1. L-Lipschitz continuous with L > 0 if ‖Ax − Ay‖ ≤ L‖x − y‖ (If L ∈ (0, 1),
then mapping A is called contraction).

2. monotone if 〈Ax − Ay, x − y〉 ≥ 0.
3. pseudo-monotone if 〈Ax, y − x〉 ≥ 0 �⇒ 〈Ay, y − x〉 ≥ 0.
4. sequentially weakly continuous if for each sequence {xn} converges weakly to x

implies that {Axn} converges weakly to Ax .

It is known that PC has the following basic properties:

〈x − PC (x), y − PC (x)〉 ≤ 0, ∀x ∈ H,∀y ∈ C, (2.1)

and

‖PC (x) − PC (y)‖2 ≤ 〈PC (x) − PC (y), x − y〉, ∀x, y ∈ H. (2.2)

We give some explicit formulas to calculate projections on special feasible sets.

1. The projection of x onto a half-space Hu,v = {x : 〈u, x〉 ≤ v} is given by

PHu,v (x) = x − max

{ 〈u, x〉 − v

‖u‖2 , 0

}
u.
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2. The projection of x onto a box Box[a, b] = {x : a ≤ x ≤ b} is given by

PBox[a,b](x)i = min {bi , max {xi , ai }} .

3. The projection of x onto a ball B[p, q] = {x : ‖x − p‖ ≤ q} is given by

PB[p,q](x) = p + q

max{‖x − p‖, q} (x − p).

Lemma 2.1 ([24]) Let {xn} be a positive sequence, {qn} be a sequence of real numbers,
and {ζn} be a sequence in (0, 1) such that

∑∞
n=1 ζn = ∞. Suppose that

xn+1 ≤ (1 − ζn) xn + ζnqn, ∀n ≥ 1.

If lim supk→∞ qnk ≤ 0 for any subsequence
{

xnk

}
of {xn} satisfying lim infk→∞(

xnk+1 − xnk

) ≥ 0, then limn→∞ xn = 0.

3 Main results

In this section, we introduce four new modified inertial projection and contraction
methods with Armijo line search step sizes to solve pseudo-monotone variational
inequalities in real Hilbert spaces. We first assume that the following conditions hold
in order to analyze the convergence of the proposed algorithms.

(C1) The feasible set C is a nonempty, closed, and convex subset ofH.
(C2) The solution set of the (VIP) is nonempty, that is, VI(C, A) �= ∅.
(C3) The mapping A : H → H is pseudo-monotone, uniformly continuous on H,

and sequentially weakly continuous on C .

3.1 The first Mann-type projection algorithm

Based on the inertial method, the modified subgradient extragradient method
(MSEGM), and the Mann-type method, our first scheme is stated in Algorithm 3.1.
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Algorithm 3.1
Initialization: Take δ > 0, γ > 0, � ∈ (0, 1), φ ∈ (0, 1), τ ∈ (0, 2/φ), and β ∈ (τ/2, 1/φ). Let
x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate the next iteration point xn+1 as
follows:
Step 1. Compute qn = xn + δn(xn − xn−1), where

δn =
⎧⎨
⎩min

{
εn

‖xn − xn−1‖ , δ

}
, if xn �= xn−1;

δ, otherwise.
(3.1)

Step 2. Compute sn = PC (qn − βλn Aqn), where the step size λn is chosen to be the largest λ ∈{
γ, γ �, γ �2, . . .

}
satisfying

λ‖Aqn − Asn‖ ≤ φ‖qn − sn‖. (3.2)

If qn = sn , then stop and sn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute tn = PHn (qn − τλnθn Asn), where

Hn := {x ∈ H | 〈qn − βλn Aqn − sn , x − sn〉 ≤ 0} ,

and

θn = (1 − βφ)
‖qn − sn‖2

‖dn‖2 , dn = qn − sn − βλn(Aqn − Asn). (3.3)

Step 4. Compute xn+1 = (1 − ζn − σn)qn + σntn .
Set n := n + 1 and go to Step 1.

Remark 3.1 Notice thatAlgorithm3.1 is different from the extragradient-typemethods
in the literature (e.g., [12–14])when calculating the values of sn and tn . Specifically, we
use two different step sizes in the calculation of sn and tn . Our algorithm has a faster
convergence speed and accuracy when choosing a suitable value of the parameter
β (see Sect. 4). In addition, the range of τ in our algorithm is τ ∈ (0, 2/φ) with
φ ∈ (0, 1), while it is τ ∈ (0, 2) in [12–14].

We can obtain the following conclusions of Lemmas 3.1 and 3.2 by a simple mod-
ification of Lemmas 3.1 and 3.3 in [25], respectively. To avoid repetitive expressions,
we omit their proofs here.

Lemma 3.1 ([25]) Suppose that Conditions (C1)–(C3) hold. The Armijo-like criteria
(3.2) is well defined.

Lemma 3.2 ([25]) Suppose that Conditions (C1)–(C3) hold. Let {qn} and {sn} be two
sequences created by Algorithm 3.1. If there exists a subsequence

{
qnk

}
of {qn} such

that
{
qnk

}
converges weakly to z ∈ H and limk→∞ ‖qnk − snk ‖ = 0, then z ∈

VI(C, A).

The following lemma is very helpful in analyzing the convergence ofAlgorithm3.1.
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Lemma 3.3 Suppose that Conditions (C1)–(C3) hold. Let {qn}, {sn}, and {tn} be three
sequences generated by Algorithm 3.1. Then, for all x∗ ∈ VI(C, A),

‖tn − x∗‖2 ≤ ‖qn − x∗‖2 − ‖qn − tn − τ

β
θndn‖2 − τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qn − sn‖2.

Proof From x∗ ∈ VI(C, A) ⊂ C ⊂ Hn and (2.2), we have

2‖tn − x∗‖2 = 2‖PHn (qn − τλnθn Asn) − PHn (x∗)‖2
≤ 2〈tn − x∗, qn − τλnθn Asn − x∗〉
= ‖tn − x∗‖2 + ‖qn − τλnθn Asn − x∗‖2 − ‖tn − qn + τλnθn Asn‖2
= ‖tn − x∗‖2 + ‖qn − x∗‖2 + τ 2λ2nθ2n ‖Asn‖2 − 2〈qn − x∗, τλnθn Asn〉

− ‖tn − qn‖2 − τ 2λ2nθ
2
n ‖Asn‖2 − 2〈tn − qn, τλnθn Asn〉

= ‖tn − x∗‖2 + ‖qn − x∗‖2 − ‖tn − qn‖2 − 2〈tn − x∗, τλnθn Asn〉,

which yields that

‖tn − x∗‖2 ≤ ‖qn − x∗‖2 − ‖tn − qn‖2 − 2τλnθn〈tn − x∗, Asn〉. (3.1)

Combining sn ∈ C and x∗ ∈ VI(C, A), it follows that 〈Ax∗, sn − x∗〉 ≥ 0. We obtain
〈Asn, sn − x∗〉 ≥ 0 according to the pseudo-monotonicity of A. This implies that
〈Asn, tn − x∗〉 ≥ 〈Asn, tn − sn〉. Hence,

− 2τλnθn〈Asn, tn − x∗〉 ≤ −2τλnθn〈Asn, tn − sn〉. (3.2)

By using tn ∈ Hn , one has 〈qn − βλn Aqn − sn, tn − sn〉 ≤ 0. This means that

〈qn − sn − βλn(Aqn − Asn)︸ ︷︷ ︸
dn

, tn − sn〉 ≤ βλn〈Asn, tn − sn〉. (3.3)

Combining (3.2), (3.3), and the definition of dn , we obtain

−2τλnθn〈Asn, tn − x∗〉 ≤ −2
τ

β
θn〈dn, tn − sn〉

= −2
τ

β
θn〈dn, qn − sn〉 + 2

τ

β
θn〈dn, qn − tn〉.

(3.4)

From the definitions of θn , dn , and (3.2), we obtain

〈dn, qn − sn〉 ≥ ‖qn − sn‖2 − βλn‖Aqn − Asn‖‖qn − sn‖
≥ ‖qn − sn‖2 − βφ‖qn − sn‖2
= (1 − βφ)‖qn − sn‖2 = θn‖dn‖2,
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which indicates that

− 2
τ

β
θn〈dn, qn − sn〉 ≤ −2

τ

β
θ2n ‖dn‖2. (3.5)

According to the basic inequality 2ab = a2 + b2 − (a − b)2, we also have

2
τ

β
θn〈dn, qn − tn〉 = ‖qn − tn‖2 + τ 2

β2 θ2n ‖dn‖2 − ‖qn − tn − τ

β
θndn‖2. (3.6)

It follows from the definition of dn and (3.2) that

‖dn‖ ≤ ‖qn − sn‖ + βλn‖Aqn − Asn‖
≤ ‖qn − sn‖ + βφ‖qn − sn‖
= (1 + βφ)‖qn − sn‖,

which combining the definition of θn yields that

θ2n ‖dn‖2 = (1 − βφ)2
‖qn − sn‖4

‖dn‖2 ≥ (1 − βφ)2

(1 + βφ)2
‖qn − sn‖2. (3.7)

Combining (3.1), (3.4), (3.5), (3.6), (3.7), and β ∈ (τ/2, 1/φ), we conclude that

‖tn − x∗‖2 ≤ ‖qn − x∗‖2 − ‖qn − tn − τ

β
θndn‖2

− τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qn − sn‖2.

This completes the proof. ��
Theorem 3.1 Suppose that Conditions (C1)–(C4) hold. Then the sequence {xn} gener-
ated by Algorithm 3.1 converges strongly to x∗ ∈ VI(C, A), where ‖x∗‖ = min{‖z‖ :
z ∈ VI(C, A)}.

(C4) Let {εn} be a positive sequence such that limn→∞ εn
ζn

= 0, where {ζn} ⊂ (0, 1)

satisfies limn→∞ ζn = 0 and
∑∞

n=1 ζn = ∞. Let {σn} ⊂ (a, b) ⊂ (0, 1 − ζn) for
some a > 0, b > 0.

Proof First, we show that the sequence {xn} is bounded. Indeed, thanks to Lemma 3.3,
τ ∈ (0, 2/φ), and β ∈ (τ/2, 1/φ), one has

‖tn − x∗‖ ≤ ‖qn − x∗‖, ∀n ≥ 1. (3.8)

By the definition of qn , one has

‖qn − x∗‖ ≤ ‖xn − x∗‖ + ζn · δn

ζn
‖xn − xn−1‖. (3.9)
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From (3.1),we obtain δn‖xn−xn−1‖ ≤ εn,∀n ≥ 1,which togetherwith limn→∞ εn
ζn

=
0 implies that

lim
n→∞

δn

ζn
‖xn − xn−1‖ ≤ lim

n→∞
εn

ζn
= 0. (3.10)

According to (3.10), we obtain that δn
ζn

‖xn − xn−1‖ → 0 as n → ∞. Therefore, there
exists a constant W1 > 0 such that

δn

ζn
‖xn − xn−1‖ ≤ W1, ∀n ≥ 1,

which combining with (3.8) and (3.9) yields that

‖tn − x∗‖ ≤ ‖qn − x∗‖ ≤ ‖xn − x∗‖ + ζnW1. (3.11)

From the definition of xn+1, one sees that

‖xn+1 − x∗‖ ≤ ‖(1 − ζn − σn)(qn − x∗) + σn(tn − x∗)‖ + ζn‖x∗‖. (3.12)

It follows from (3.8) that

‖(1 − ζn − σn)(qn − x∗) + σn(tn − x∗)‖2
≤ (1 − ζn − σn)2‖qn − x∗‖2 + σ 2

n ‖tn − x∗‖2
+ 2(1 − ζn − σn)σn‖tn − x∗‖‖qn − x∗‖

≤ (1 − ζn − σn)2‖qn − x∗‖2 + σ 2
n ‖qn − x∗‖2

+ 2(1 − ζn − σn)σn‖qn − x∗‖2
= (1 − ζn)2‖qn − x∗‖2,

which implies that

‖(1 − ζn − σn)(qn − x∗) + σn(tn − x∗)‖ ≤ (1 − ζn)‖qn − x∗‖. (3.13)

From (3.11), (3.12), and (3.13), we conclude that

‖xn+1 − x∗‖ ≤ (1 − ζn)‖qn − x∗‖ + ζn‖x∗‖
≤ (1 − ζn)‖xn − x∗‖ + ζn(‖x∗‖ + W1)

≤ max{‖xn − x∗‖, ‖x∗‖ + W1}
≤ · · · ≤ max{‖x1 − x∗‖, ‖x∗‖ + W1}.

That is, {xn} is bounded, and so are {qn}, {sn}, and {tn}.
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From (3.11), one sees that

‖qn − x∗‖2 ≤ (‖xn − x∗‖ + ζnW1)
2

= ‖xn − x∗‖2 + ζn(2W1‖xn − x∗‖ + ζnW 2
1 )

≤ ‖xn − x∗‖2 + ζnW2

(3.14)

for some W2 > 0. By the definition of xn+1 and Condition (C4), we have

‖xn+1 − x∗‖2 = ‖(1 − ζn − σn)(qn − x∗) + σn(tn − x∗) + ζn(−x∗)‖2
= (1 − ζn − σn)‖qn − x∗‖2 + σn‖tn − x∗‖2 + ζn‖x∗‖2

− σn(1 − ζn − σn)‖qn − tn‖2 − ζnσn‖tn‖2
− ζn(1 − ζn − σn)‖qn‖2

≤ (1 − ζn − σn)‖qn − x∗‖2 + σn‖tn − x∗‖2 + ζn‖x∗‖2.

(3.15)

From Lemma 3.3, (3.14), and (3.15), we obtain

‖xn+1 − x∗‖2 ≤ (1 − ζn − σn)‖qn − x∗‖2 + σn‖qn − x∗‖2 − σn‖qn − tn − τ

β
θndn‖2

− σn
τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qn − sn‖2 + ζn‖x∗‖2

≤ ‖xn − x∗‖2 − σn‖qn − tn − τ

β
θndn‖2 + ζn(‖x∗‖2 + W2)

− σn
τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qn − sn‖2.

Thus we have

σn‖qn − tn − τ

β
θndn‖2 + σn

τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qn − sn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ζn(‖x∗‖2 + W2).

(Eq1)

From the definition of qn , one sees that

‖qn − x∗‖2 ≤ ‖xn − x∗‖2 + 2δn‖xn − x∗‖‖xn − xn−1‖ + δ2n‖xn − xn−1‖2
≤ ‖xn − x∗‖2 + 3Wδn‖xn − xn−1‖,

(3.16)

where W := supn∈N{‖xn − x∗‖, δ‖xn − xn−1‖} > 0. Set bn = (1 − σn)qn + σntn . It
follows from (3.8) that

‖bn − x∗‖ ≤ (1 − σn)‖qn − x∗‖ + σn‖tn − x∗‖ ≤ ‖qn − x∗‖. (3.17)
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From (3.16) and (3.17), we have

‖xn+1 − x∗‖2 (Eq2)

= ‖(1 − ζn)(bn − x∗) − ζn(qn − bn) − ζn x∗‖2
≤ (1 − ζn)2‖bn − x∗‖2 − 2ζn〈qn − bn + x∗, xn+1 − x∗〉
= (1 − ζn)2‖bn − x∗‖2 + 2ζn〈qn − bn, x∗ − xn+1〉 + 2ζn〈x∗, x∗ − xn+1〉
≤ (1 − ζn)‖bn − x∗‖2 + 2ζn‖qn − bn‖‖xn+1 − x∗‖ + 2ζn〈x∗, x∗ − xn+1〉
≤ (1 − ζn)‖xn − x∗‖2 + ζn

[
2σn‖qn − tn‖‖xn+1 − x∗‖

+ 2〈x∗, x∗ − xn+1〉 + 3Wδn

ζn
‖xn − xn−1‖

]
.

Finally, we show that {‖xn − x∗‖} converges to zero. Throughout this paper,
we always assume that {‖xnk − x∗‖} is a subsequence of {‖xn − x∗‖} such that
lim infk→∞(‖xnk+1 − x∗‖ − ‖xnk − x∗‖) ≥ 0. Then,

lim inf
k→∞

(‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2)
= lim inf

k→∞
[
(‖xnk+1 − x∗‖ − ‖xnk − x∗‖)(‖xnk+1 − x∗‖ + ‖xnk − x∗‖)] ≥ 0.

Combining (Eq1), Condition (C4), τ ∈ (0, 2/φ), and β ∈ (τ/2, 1/φ), we have

lim sup
k→∞

{
σnk

τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qnk − snk ‖2 + σnk ‖qnk − tnk − τ

β
θnk dnk ‖2

}
≤ lim sup

k→∞
[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2]+ lim sup

k→∞
ζnk (‖x∗‖2 + W2)

= − lim inf
k→∞

[‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2] ≤ 0,

which yields that

lim
k→∞ ‖snk − qnk ‖ = 0 and lim

k→∞ ‖qnk − tnk − τ

β
θnk dnk ‖ = 0.

From ‖dnk ‖ ≥ (1 − βφ)‖qnk − snk ‖ and the definition of θnk , we obtain

‖qnk − tnk ‖ ≤ ‖qnk − tnk − τ

β
θnk dnk ‖ + τ

β
θnk ‖dnk ‖

= ‖qnk − tnk − τ

β
θnk dnk ‖ + τ

β
(1 − βφ)

‖qnk − snk ‖2
‖dnk ‖

≤ ‖qnk − tnk − τ

β
θnk dnk ‖ + τ

β
‖qnk − snk ‖.
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Hence, we have that limk→∞ ‖tnk − qnk ‖ = 0. This together with the boundedness of
{xn} means that

lim
k→∞ σnk ‖qnk − tnk ‖‖xnk+1 − x∗‖ = 0. (3.18)

Combining (3.10) and Condition (C4), we have

‖xnk+1 − qnk ‖ = ζnk ‖qnk ‖ + σnk ‖tnk − qnk ‖ → 0 as n → ∞,

and

‖xnk − qnk ‖ = ζnk · δnk

ζnk

‖xnk − xnk−1‖ → 0 as n → ∞.

From the above facts, we conclude that

‖xnk+1 − xnk ‖ ≤ ‖xnk+1 − qnk ‖ + ‖qnk − xnk ‖ → 0 as n → ∞. (3.19)

Since the sequence {xnk } is bounded, there exists a subsequence {xnk j
} of {xnk } such

that xnk j
⇀z when j → ∞. Furthermore,

lim sup
k→∞

〈x∗, x∗ − xnk 〉 = lim
j→∞〈x∗, x∗ − xnk j

〉 = 〈x∗, x∗ − z〉. (3.20)

We obtain that qnk ⇀z since ‖xnk − qnk ‖ → 0. This together with limk→∞ ‖qnk −
snk ‖ = 0 and Lemma 3.2 yields that z ∈ VI(C, A). By using (2.1), (3.20), and the
definition of x∗, we obtain

lim sup
k→∞

〈x∗, x∗ − xnk 〉 = 〈x∗, x∗ − z〉 ≤ 0. (3.21)

From (3.19) and (3.21), we have

lim sup
k→∞

〈x∗, x∗ − xnk+1〉 ≤ lim sup
k→∞

〈x∗, x∗ − xnk 〉 ≤ 0. (3.22)

Combining (3.10), (3.18), (3.22), (Eq2), and Lemma 2.1, we conclude that xn → x∗
as n → ∞. The proof is completed. ��

Remark 3.2 Notice that the convergence of the proposed Algorithm 3.1 is proved in
the case where operator A is uniformly continuous rather than Lipschitz continuous.
This cannot be achieved by many methods in the literature that use self-adaptive step
sizes (see, e.g., [15,18]).
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3.2 The first viscosity-type projection algorithm

In this subsection,we present a viscosity-type inertialmodified subgradient extragradi-
entmethod for solving (VIP). The details of this scheme are described inAlgorithm3.2.

Algorithm 3.2
Initialization: Take δ > 0, γ > 0, � ∈ (0, 1), φ ∈ (0, 1), τ ∈ (0, 2/φ), and β ∈ (τ/2, 1/φ). Let
x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qn = xn + δn
(
xn − xn−1

)
,

sn = PC (qn − βλn Aqn) ,

tn = PHn (qn − τλnθn Asn),

Hn := {x ∈ H | 〈qn − βλn Aqn − sn , x − sn〉 ≤ 0} ,

xn+1 = ζn f (tn) + (1 − ζn) tn ,

where {δn}, {λn}, and {θn} are defined in (3.1), (3.2), and (3.3), respectively.

Theorem 3.2 Suppose that Conditions (C1)–(C3) and (C5) hold. Then the sequence
{xn} created by Algorithm 3.2 converges strongly to x∗ ∈ VI(C, A), where x∗ =
PVI(C,A) ◦ f (x∗).

(C5) Let f : H → H be a κ-contraction mapping with κ ∈ [0, 1) and let {εn} be
a positive sequence such that limn→∞ εn

ζn
= 0, where {ζn} ⊂ (0, 1) satisfies

limn→∞ ζn = 0 and
∑∞

n=1 ζn = ∞.

Proof By the definition of xn+1 and (3.11), we have

‖xn+1 − x∗‖ ≤ ζn‖ f (tn) − f (x∗)‖ + ζn‖ f (x∗) − x∗‖ + (1 − ζn)‖tn − x∗‖
≤ (1 − (1 − κ)ζn)‖xn − x∗‖ + (1 − κ)ζn

W1 + ‖ f (x∗) − x∗‖
1 − κ

≤ max

{
‖x1 − x∗‖, W1 + ‖ f (x∗) − x∗‖

1 − κ

}
.

This means that {xn} is bounded. Hence, {qn}, {sn}, {tn}, and { f (tn)} are also bounded.
From Lemma 3.3 and (3.14), we obtain

‖xn+1 − x∗‖2 ≤ ζn(‖tn − x∗‖ + ‖ f (x∗) − x∗‖)2 + (1 − ζn)‖tn − x∗‖2
= ζn‖tn − x∗‖2 + (1 − ζn)‖tn − x∗‖2

+ζn

(
2‖tn − x∗‖‖ f (x∗) − x∗‖ + ‖ f (x∗) − x∗‖2

)
≤ ‖tn − x∗‖2 + ζnW3

≤ ‖xn − x∗‖2 − ‖qn − tn − τ

β
θndn‖2
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− τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qn − sn‖2 + ζnW4,

where W3 := max{2‖tn − x∗‖‖ f (x∗) − x∗‖ + ‖ f (x∗) − x∗‖2} and W4 := W2 + W3.
Thus,

τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qn − sn‖2 + ‖qn − tn − τ

β
θndn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ζnW4.

(Eq3)

By using (3.8) and (3.16), we have

‖xn+1 − x∗‖2
= ‖ζn( f (tn) − f (x∗)) + (1 − ζn)(tn − x∗) + ζn( f (x∗) − x∗)‖2
≤ ζnκ‖tn − x∗‖2 + (1 − ζn)‖tn − x∗‖2 + 2ζn〈 f (x∗) − x∗, xn+1 − x∗〉
≤ (1 − (1 − κ)ζn)‖xn − x∗‖2 + (1 − κ)ζn ·

[ 3W

1 − κ
· δn

ζn
‖xn − xn−1‖

+ 2

1 − κ
〈 f (x∗) − x∗, xn+1 − x∗〉

]
.

(Eq4)

Finally, we show that {‖xn − x∗‖} converges to zero. From (Eq3), Condition (C5),
τ ∈ (0, 2/φ), and β ∈ (τ/2, 1/φ), we have

lim sup
k→∞

{
τ

β2 (2β − τ)
(1 − βφ)2

(1 + βφ)2
‖qnk − snk ‖2 + ‖qnk − tnk − τ

β
θnk dnk ‖2

}
≤ lim sup

k→∞
[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + ζnk W4

] ≤ 0,

which indicates that

lim
k→∞ ‖snk − qnk ‖ = 0 and lim

k→∞ ‖qnk − tnk − τ

β
θnk dnk ‖ = 0.

As stated in Theorem 3.1, it is easy to see that limk→∞ ‖tnk − qnk ‖ = 0. From (3.10)
and Condition (C5), we obtain

‖xnk+1 − tnk ‖ = ζnk ‖tnk − f (xnk )‖ → 0 as n → ∞,

and

‖xnk − qnk ‖ = ζnk · δnk

ζnk

‖xnk − xnk−1‖ → 0 as n → ∞.

Therefore,

‖xnk+1 − xnk ‖ ≤ ‖xnk+1 − tnk ‖ + ‖tnk − qnk ‖ + ‖qnk − xnk ‖ → 0 as n → ∞.
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(3.23)

Since {xnk } is bounded, there exists a subsequence {xnk j
} of {xnk } such that xnk j

⇀z
when j → ∞. Moreover,

lim sup
k→∞

〈 f (x∗) − x∗, xnk − x∗〉 = lim
j→∞〈 f (x∗) − x∗, xnk j

− x∗〉
= 〈 f (x∗) − x∗, z − x∗〉.

(3.24)

Wehave that qnk ⇀z as ‖xnk −qnk ‖ → 0,which togetherwith limk→∞ ‖qnk −snk ‖ = 0
and Lemma 3.2 implies that z ∈ VI(C, A). From (2.1), (3.24), and the definition of
x∗, we have

lim sup
k→∞

〈 f (x∗) − x∗, xnk − x∗〉 = 〈 f (x∗) − x∗, z − x∗〉 ≤ 0. (3.25)

By using (3.23) and (3.25), we obtain

lim sup
k→∞

〈 f (x∗) − x∗, xnk+1 − x∗〉 ≤ lim sup
k→∞

〈 f (x∗) − x∗, xnk − x∗〉 ≤ 0. (3.26)

From (3.10), (3.26), (Eq4), and Lemma 2.1, we conclude that xn → x∗ as n → ∞.
The proof of the Theorem 3.2 is now complete. ��

3.3 The secondMann-type projection algorithm

Inspired by the algorithms of Gibali et al. [14], in this subsection, we introduce a
new modified inertial projection and contraction algorithm to solve pseudo-monotone
variational inequalities in infinite-dimensional Hilbert spaces. Now, we present the
proposed scheme in Algorithm 3.3.

Algorithm 3.3
Initialization: Take δ > 0, γ > 0, � ∈ (0, 1), φ ∈ (0, 1), τ ∈ (0, 2), and β ∈ (0, 1/φ). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qn = xn + δn
(
xn − xn−1

)
,

sn = PC (qn − βλn Aqn) ,

tn = qn − τθndn ,

xn+1 = (1 − ζn − σn)qn + σntn ,

where {δn}, {λn}, and {θn} are defined in (3.1), (3.2), and (3.3), respectively.

Remark 3.3 It is worth noting that our Algorithm 3.3 is different from the algorithms
presented in [14] in the calculation of sn , and our numerical experiments in the next
section will show that our algorithm has a higher accuracy and faster convergence
speed than the algorithms in [14] when choosing the appropriate value of β.
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The following lemma plays a crucial role in studying the convergence of Algo-
rithm 3.3.

Lemma 3.4 Suppose that Conditions (C1)–(C3) hold. Let {qn}, {sn}, and {tn} be three
sequences generated by Algorithm 3.3. Then,

‖tn − x∗‖2 ≤ ‖qn − x∗‖2 − 2 − τ

τ
‖qn − tn‖2, ∀x∗ ∈ VI(C, A),

and

‖qn − sn‖2 ≤
[

1 + βφ

(1 − βφ)τ

]2
‖qn − tn‖2.

Proof From the definition of tn , one sees that

‖tn − x∗‖2 = ‖qn − τθndn − x∗‖2
= ‖qn − x∗‖2 − 2τθn〈qn − x∗, dn〉 + τ 2θ2n ‖dn‖2. (3.27)

From (3.2) and (3.3), we have

〈qn − x∗, dn〉 = 〈qn − sn, qn − sn − βλn(Aqn − Asn)〉 + 〈sn − x∗, dn〉
≥ ‖qn − sn‖2 − βλn‖qn − sn‖‖Aqn − Asn‖ + 〈sn − x∗, dn〉
≥ (1 − βφ)‖qn − sn‖2 + 〈sn − x∗, qn − sn − βλn(Aqn − Asn)〉.

(3.28)

Combining sn = PC (qn − βλn Aqn) and (2.1), we obtain

〈qn − sn − βλn Aqn, sn − x∗〉 ≥ 0. (3.29)

Using x∗ ∈ VI(C, A) and sn ∈ C , we obtain that 〈Ax∗, sn − x∗〉 ≥ 0. This together
with the pseudo-monotonicity of mapping A implies that

〈Asn, sn − x∗〉 ≥ 0. (3.30)

It follows from (3.3) that (1−βφ)‖qn −sn‖2 = θn‖dn‖2. This combining with (3.28),
(3.29), and (3.30) yields that

〈qn − x∗, dn〉 ≥ (1 − βφ)‖qn − sn‖2 = θn‖dn‖2. (3.31)

Combining (3.27) and (3.31), we conclude that

‖tn − x∗‖2 ≤ ‖qn − x∗‖2 − 2τθ2n ‖dn‖2 + τ 2θ2n ‖dn‖2

= ‖qn − x∗‖2 − 2 − τ

τ
‖qn − tn‖2.
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From the definition of tn and (3.3), we obtain

‖qn − sn‖2 = 1

θn(1 − βφ)
‖θndn‖2 = 1

θn(1 − βφ)τ 2
‖qn − tn‖2. (3.32)

Since ‖dn‖ ≤ (1 + βφ)‖qn − sn‖, we have

θn = (1 − βφ)
‖qn − sn‖2

‖dn‖2 ≥ 1 − βφ

(1 + βφ)2
. (3.33)

It follows from (3.32) and (3.33) that

‖qn − sn‖2 ≤
[

1 + βφ

(1 − βφ)τ

]2
‖qn − tn‖2.

The proof of the lemma is now complete. ��
Theorem 3.3 Suppose that Conditions (C1)–(C4) hold. Then the sequence {xn} gener-
ated by Algorithm 3.3 converges strongly to x∗ ∈ VI(C, A), where ‖x∗‖ = min{‖z‖ :
z ∈ VI(C, A)}.
Proof Thanks to Lemma 3.4 and τ ∈ (0, 2), we obtain

‖tn − x∗‖ ≤ ‖qn − x∗‖, ∀n ≥ 1. (3.34)

Using the same facts as stated in Theorem 3.1, we find that {xn}, {qn}, {sn}, and {tn}
are bounded. From Lemma 3.4, (3.14), and (3.15), we have

‖xn+1 − x∗‖2 ≤ (1 − ζn − σn)‖qn − x∗‖2 + σn‖qn − x∗‖2

− σn
2 − τ

τ
‖qn − tn‖2 + ζn‖x∗‖2

≤ ‖xn − x∗‖2 − σn
2 − τ

τ
‖qn − tn‖2 + ζn(‖x∗‖2 + W2).

By a simple conversion, we assert that

σn
2 − τ

τ
‖qn − tn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ζn(‖x∗‖2 + W2). (Eq5)

Moreover, we can obtain (Eq2) by using the same facts as declared in Theorem 3.1.
Finally, we prove that {‖xn − x∗‖} converges to zero. From (Eq5) and Condition (C4),
we have

lim sup
k→∞

σnk

2 − τ

τ
‖qnk − tnk ‖2

≤ lim sup
k→∞

[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + ζnk (‖x∗‖2 + W2)
]

≤ 0,
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which means that limk→∞ ‖tnk − qnk ‖ = 0. In view of Lemma 3.4, we observe that
limk→∞ ‖snk − qnk ‖ = 0. As asserted in Theorem 3.1, we can obtain the same result
as (3.18)–(3.22). Therefore, we have that xn → x∗ as n → ∞. This completes the
proof. ��

3.4 The second viscosity-type projection algorithm

In this subsection, we present a viscosity version of Algorithm 3.3. Now, the last
iterative scheme stated in this paper is shown in Algorithm 3.4 below.

Algorithm 3.4
Initialization: Take δ > 0, γ > 0, � ∈ (0, 1), φ ∈ (0, 1), τ ∈ (0, 2), and β ∈ (0, 1/φ). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qn = xn + δn
(
xn − xn−1

)
,

sn = PC (qn − βλn Aqn) ,

tn = qn − τθndn ,

xn+1 = ζn f (tn) + (1 − ζn) tn ,

where {δn}, {λn}, and {θn} are defined in (3.1), (3.2), and (3.3), respectively.

Theorem 3.4 Suppose that Conditions (C1)–(C3) and (C5) hold. Then the sequence
{xn} created by Algorithm 3.4 converges strongly to x∗ ∈ VI(C, A), where x∗ =
PVI(C,A) ◦ f (x∗).

Proof Using the same arguments as declared in Theorem 3.2, we conclude that {xn},
{qn}, {sn}, {tn} and { f (tn)} are bounded. From Lemma 3.4, and (3.14), we obtain

2 − τ

τ
‖qn − tn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + ζnW4, (Eq6)

where W4 is defined in (Eq3). Moreover, we can obtain (Eq4) by using the same facts
as stated in Theorem 3.2. Finally, we show that {‖xn − x∗‖} converges to zero. From
(Eq6) and Condition (C5), we have

lim sup
k→∞

2 − τ

τ
‖qnk − tnk ‖2 ≤ 0,

which implies that limk→∞ ‖tnk − qnk ‖ = 0. This together with Lemma 3.4 yields
that limk→∞ ‖snk − qnk ‖ = 0. As stated in Theorem 3.2, we can obtain the same
facts as (3.23)–(3.26). Therefore, we conclude that xn → x∗ as n → ∞. The proof is
completed. ��
Remark 3.4 Our four algorithms have the following advantages over the algorithms
presented in [12–19]. More precisely, our contributions in this paper are as follows.
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(i) To improve the convergence speed and computational accuracy of the suggested
algorithms, we add inertial terms to the proposed schemes and use two different
step sizes in the computation of {sn} and {tn}. The computational efficiency of
our algorithms will be explained and shown in detail in Sect. 4.

(ii) The proposed algorithms can solve awider range of pseudo-monotone variational
inequalities, while the algorithms introduced in [12–14,19] are only applicable to
monotone variational inequalities.Moreover, the variational inequality operators
involved in our algorithms are non-Lipschitz continuous, which extends many of
the results in [12–19] for solving Lipschitz continuous variational inequalities.

(iii) The fixed step size algorithms given in [16,17,19] require the prior information
about the Lipschitz constant of the mapping to work, while our algorithms use
an Armijo step size criterion that allows them to work adaptively without this
information.

(iv) The iterative sequences generated by our algorithms obtain strong convergence in
an infinite-dimensional Hilbert space, which improves on the weakly convergent
algorithms obtained in [12,15,18,19].

Thus, our four iterative schemes are intelligent, useful, and efficient in solving varia-
tional inequality problems.

4 Numerical experiments and applications

In this section, we provide some numerical experiments to demonstrate the advantages
of the suggested methods and compare them with some known strongly convergent
algorithms in [13,14], which including the algorithms 3.1 and 3.2 presented by Thong
and Gibali [13] (shortly, TG Alg. 3.1 and TG Alg. 3.2), and the algorithms 3.1 and
3.2 introduced by Gibali et al. [14] (shortly, GTT Alg. 3.1 and GTT Alg. 3.2). All the
programs are implemented in MATLAB 2018a on a personal computer.

4.1 Theoretical examples

Example 4.1 Consider the form of linear operator A : R
m → R

m (m =
20, 50, 100, 200) as follows: A(x) = Gx + g, where g ∈ R

m and G = B BT + S + E ,
matrix B ∈ R

m×m , matrix S ∈ R
m×m is skew-symmetric, and matrix E ∈ R

m×m is
diagonalmatrixwhose diagonal terms are non-negative (henceG is positive symmetric
definite).We choose the feasible setC is a box constraint with the formC = [−2, 5]m .
It is easy to see that A is Lipschitz continuous andmonotone, and its Lipschitz constant
is L = ‖G‖. In this numerical example, all entries of B and S are generated randomly
in [−2, 2], and E is generated randomly in [0, 2]. Let g = 0. Then the solution set
is x∗ = {0}. The parameters of all algorithms are set as follows. Choose γ = 2,
� = 0.5, φ = 0.6, τ = 1.5, ζn = 1/(n + 1), σn = 0.5(1 − ζn) and f (x) = 0.1x
for all algorithms. Take δ = 0.4, εn = 100/(n + 1)2 and β = 0.8 for the proposed
algorithms. We use Dn = ‖xn − x∗‖ to measure the nth iteration error of all algo-
rithms. The maximum number of iterations of 200 as a common stopping criterion
and the initial values x0 = x1 are randomly generated by 5rand(m,1) in MATLAB.
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Fig. 1 The behavior of the proposed algorithms with different β in Example 4.1 (m = 20)

Figure 1 shows the convergence behavior of the proposed algorithms at m = 20 with
different parameters β. Table 1 shows the numerical results of all algorithms with four
dimensions.

Example 4.2 We consider an example in the Hilbert space H = L2([0, 1]) associated
with inner product

〈x, y〉 :=
∫ 1

0
x(t)y(t)dt, ∀x, y ∈ H

and induced norm

‖x‖ :=
( ∫ 1

0
|x(t)|2dt

)1/2
, ∀x ∈ H.

Let the feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}. Define an operator
A : C → H by

(Ax)(t) =
∫ 1

0
(x(t) − G(t, s)g(x(s)))ds + h(t), t ∈ [0, 1], x ∈ C,
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where

G(t, s) = 2tset+s

e
√
e2 − 1

, g(x) = cos x, h(t) = 2tet

e
√
e2 − 1

.

It is known that A is monotone and L-Lipschitz continuous with L = 2 (see [26]),
and x∗(t) = {0} is the solution of the corresponding variational inequality problem.
The parameters of all algorithms are set as follows. Choose γ = 2, � = 0.5, φ = 0.4,
τ = 1.5, ζn = 1/(n + 1), σn = 0.9(1 − ζn) and f (x) = 0.1x for all algorithms.
Adopt δ = 0.2, εn = 1/(n + 1)2 and β = 0.8 for the proposed algorithms. We use
Dn = ‖xn(t) − x∗(t)‖ to measure the nth iteration error of all algorithms. We choose
the maximum number of iterations of 20 as the common stopping criterion. Table 2
shows the numerical results of all algorithms with four starting points x0(t) = x1(t).

Example 4.3 Consider the Hilbert space H = l2 := {x = (x1, x2, . . . , xi , . . .) |∑∞
i=1 |xi |2 < +∞} equipped with inner product

〈x, y〉 =
∞∑

i=1

xi yi , ∀x, y ∈ H

and induced norm

‖x‖ = √〈x, x〉, ∀x ∈ H.

Let C := {x ∈ H : |xi | ≤ 1/i}. Define an operator A : C → H by

Ax =
(

‖x‖ + 1

‖x‖ + ϕ

)
x, ϕ > 0.

It can be verified that mapping A is pseudo-monotone onH, uniformly continuous and
sequentially weakly continuous on C but not Lipschitz continuous onH (see [27]). In
this example, we take ϕ = 0.5 andH = R

m for different values of m. We compare the
proposed algorithms with several strongly convergent ones that can solve the (VIP)
with uniformly continuous operators, which including the Algorithm 4 proposed by
Reich et al. [28] (shortly, RTDLD Alg. 4), the Algorithm 3 suggested by Thong et al.
[29] (shortly, TSI Alg. 3), and the Algorithm 3.1 introduced by Cai et al. [30] (shortly,
CDP Alg. 3.1). The parameters of all algorithms are set as follows.

– Theparameters of the proposed algorithms are the sameas those set inExample 4.1.
– In the RTDLD Alg. 4 [28], we take � = 0.5, φ = 0.4, λ = 0.5/φ, ζn = 1/(n + 1),
and f (x) = 0.1x .

– In the TSI Alg. 3 [29] and the CDP Alg. 3.1 [30], we choose γ = 2, � = 0.5,
φ = 0.6, ζn = 1/(n + 1), and f (x) = 0.1x .

The initial values x0 and x1 are generated randomly by the function rand(m,1) in
MATLAB. The maximum number of iterations 200 is used as a common stopping
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criterion. We measure the error of all algorithms at the nth iteration using En =
‖qn − sn‖. By the property of projection (2.1), it is known that sn can be seen as a
solution of the problem (VIP) when En → 0. The numerical results for all algorithms
with four dimensions are reported in Table 3.

Remark 4.1 We have the following observations for Examples 4.1–4.3.

1. As can be seen in Fig. 1, different values of the parameter β have different effects
on the proposed algorithms. When β < 1 can accelerate the convergence speed
of the suggested methods when β = 1. Therefore, the schemes proposed in this
paper are useful.

2. From Tables 1, 2 and 3, we know that our algorithms have a higher accuracy than
some known methods in the literature [13,14,28–30] when performing the same
stopping criterion, and this result is independent of the size of the dimension and
the choice of the initial values. Therefore, our algorithms are efficient and robust.

3. It can be seen from Table 2 that our algorithms take more execution time in an
infinite-dimensional space than the algorithms in [13,14], due to the fact that our
algorithms need to compute the inertial parameters in each iteration. However, our
algorithms can achieve a higher accuracy under the same stopping criterion.

4. In Example 4.3, the variational inequality operator A is pseudo-monotone and uni-
formly continuous rather than Lipschitz continuous. In this case, the algorithms
used in [12–14] for solving monotone variational inequalities and the algorithms
proposed in [15–18] for solving pseudo-monotone and Lipschitz continuous vari-
ational inequalities will not be available.

5. Our algorithms employ an Armijo step size criterion that allows them to work
without the prior knowledge of the Lipschitz constant. The fixed step size algo-
rithms proposed in [16,17,19] need to work with the knowledge of the Lipschitz
constant. In other words, the fixed step size algorithms [16,17,19] will not work
without the prior knowledge of the Lipschitz constant of the mapping. Therefore,
the algorithms proposed in this paper are more useful than the fixed step size
algorithms (e.g., [16,17,19]) in practical applications.

4.2 Application to optimal control problems

In this subsection, we use the proposed algorithms to solve the (VIP) that appears
in optimal control problems. We recommend readers to refer to [1,31] for detailed
description of the problem.Takeγ = 1, � = 0.5,φ = 0.4, τ = 1.5, ζn = 10−4/(n+1),
σn = 0.9(1 − ζn), and f (x) = 0.1x for all algorithms. Choose β = 0.8, δ = 0.01,
and εn = 10−4/(n + 1)2 for the proposed Algorithms 3.1 and 3.2. Select β = 1.0,
δ = 0.01, and εn = 10−4/(n+1)2 for the proposed Algorithms 3.3 and 3.4. The initial
controls p0(t) = p1(t) are randomly generated in [−1, 1] and the stopping criterion
is En = ‖pn+1 − pn‖ ≤ 10−3.
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Fig. 2 Numerical results of the proposed Algorithm 3.1 for Example 4.4

Example 4.4 [Rocket car [31]]

minimize
1

2

(
(x1(5))

2 + (x2(5))
2
)

,

subject to ẋ1(t) = x2(t), ẋ2(t) = p(t), ∀t ∈ [0, 5],
x1(0) = 6, x2(0) = 1, p(t) ∈ [−1, 1].

The exact optimal control of Example 4.4 is p∗(t) = −1 if t ∈ (0, 3.517] and
p∗(t) = 1 if t ∈ (3.517, 5]. The approximate optimal control and the corresponding
trajectories of Algorithm 3.1 are plotted in Fig. 2.

Example 4.5 (See [32])

minimize − x1(2) + (x2(2))
2 ,

subject to ẋ1(t) = x2(t), ẋ2(t) = p(t), ∀t ∈ [0, 2],
x1(0) = 0, x2(0) = 0, p(t) ∈ [−1, 1].

The exact optimal control of Example 4.5 is p∗(t) = 1 if t ∈ [0, 1.2) and p∗(t) = −1
if t ∈ (1.2, 2]. Figure 3 gives the approximate optimal control and the corresponding
trajectories of Algorithm 3.4.

Finally, the numerical results of all algorithms in Examples 4.4 and 4.5 are shown
in Fig. 4 and Table 4.

Remark 4.2 From Figs. 2, 3, 4 and Table 4, we know that the suggested algorithms
can be applied to solve optimal control problems and they perform well.

5 Conclusions

In this study, we proposed four accelerated inertial extragradient algorithms for solv-
ing variational inequalities in infinite-dimensional Hilbert spaces. Our methods are
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Fig. 3 Numerical results of the proposed Algorithm 3.4 for Example 4.5
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Fig. 4 Numerical behavior of all algorithms in Examples 4.4 and 4.5

Table 4 Numerical results of all algorithms for Examples 4.4 and 4.5

Algorithms Example 4.4 Example 4.5

Iter. CPU En Iter. CPU En

Our Alg. 3.1 164 0.1343 9.8832E−04 99 0.0518 9.9745E−04

Our Alg. 3.2 144 0.1065 9.9391E−04 87 0.0391 9.9366E−04

Our Alg. 3.3 242 0.2458 9.9761E−04 206 0.1204 9.6920E−04

Our Alg. 3.4 237 0.2360 8.5812E−04 186 0.1047 9.7685E−04

TG Alg. 3.1 175 0.1200 9.9061E−04 110 0.0445 9.8535E−04

TG Alg. 3.2 158 0.1099 9.8821E−04 100 0.0411 9.9252E−04

GTT Alg. 3.1 266 0.2617 9.1061E−04 213 0.1196 9.7499E−04

GTT Alg. 3.2 254 0.2454 8.3673E−04 189 0.1059 9.6885E−04
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inspired by the subgradient extragradient method, the projection and contraction
method, the inertial method, the Mann method, and the viscosity method. Notice that
the variational inequality operators involved in our methods are pseudo-monotone and
non-Lipschitz continuous. The proposed algorithms employ an Armijo step size crite-
rion allowing them to work without the prior information of the Lipschitz constant of
the mapping. The strong convergence of the sequences generated by the proposed iter-
ative schemes is proved under some suitable conditions imposed on the parameters.
Finally, some numerical tests and applications verified the advantages and perfor-
mance of the proposed algorithms with respect to previously known schemes. The
results obtained in this paper improved and generalized many algorithms proposed in
the literature for solving variational inequalities.
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