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Abstract. In this paper, four modified subgradient extragradient algorithms are proposed for solving
bilevel pseudomonotone variational inequality problems in real Hilbert spaces. The proposed algorithms
can work adaptively without the prior knowledge of the Lipschitz constant of the pseudomonotone
mapping. Strong convergence theorems for the suggested algorithms are established under suitable
and mild conditions. Finally, some numerical experiments and applications are performed to verify the
efficiency of the proposed algorithms with respect to some previously known ones.
Keywords. Bilevel variational inequality problem; Inertial method; Subgradient extragradient method;
Optimal control; Adaptive stepsize.

1. INTRODUCTION

Recall that the classical variational inequality problem is described as follows:

find y∗ ∈C such that 〈My∗,z− y∗〉 ≥ 0, ∀z ∈C, (VIP)

where C is a nonempty, closed, and convex subset of a real Hilbert space H , which is endowed
with inner product 〈·, ·〉 and induced norm ‖ · ‖, and M : C→H is an operator. It is known
that the variational inequality model provides a general and useful framework for solving many
problems in economics, engineering, data sciences, optimal control, mathematical programming,
and other fields (see, e.g., [1–3]). Recently, many scholars proposed a large number of numerical
algorithms to solve the variational inequality problem and its extensions in infinite-dimensional
spaces; see, e.g., [4–12] and the references therein. Our focus in this paper is to investigate
several numerical algorithms to solve the following bilevel variational inequality problem:

find x∗ ∈ VI(C,M) such that 〈Fx∗,y− x∗〉 ≥ 0, ∀y ∈ VI(C,M), (BVIP)

where VI(C,M) denotes the set of all solutions of (VIP) and F : C→H is an operator.
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The bilevel variational inequality problem covers a number of nonlinear optimization problems,
such as fixed point problems, quasi-variational inequality problems, complementary problems,
saddle problems, and minimum norm problems. Therefore, it is useful to explore effective numer-
ical algorithms for solving the (BVIP). Recently, various iterative algorithms were proposed for
solving the (BVIP); see, e.g., [13–18]. Here, we state the drawbacks of the existing algorithms
in the literature for solving (BVIP), which is the main motivation for this paper. Note that the
algorithms introduced in [13–15] require two computations of the projection on the feasible
set in each iteration. This may affect the computational efficiency of these algorithms if the
projection on the feasible set is difficult to compute. Moreover, it is worth noting that the operator
M in the algorithms proposed in [13, 15] are monotone, while the operator M in [14, 16–18]
are pseudomonotone. On the other hand, the algorithms presented in [13, 14] require the prior
information of the Lipschitz constant of the operator M, while the algorithms given in [15–18]
can work adaptively since they use some adaptive step size criterion. However, the algorithms
introduced in [15–18] generate a non-increasing sequence of step sizes, which may affect the
execution efficiency of such adaptive algorithms. To overcome this difficulty, Liu and Yang [19]
offered several methods with non-monotonic step size sequences for solving variational inequal-
ity problems. Furthermore, a common characteristic enjoyed by these algorithms suggested
in [13–18] is that the operator M is required to be Lipschitz continuous. However, this condition
may be difficult to be satisfied in real applications because there exist some mappings that do not
satisfy Lipschitz continuity (such as uniformly continuous mappings). Very recently, Cai, Dong,
and Peng [20] introduced an iterative scheme with a new Armijo-type step size rule to solve
pseudomonotone and non-Lipschitz continuous variational inequality problems in real Hilbert
spaces. In the past decades, inertial techniques are widely used by scholars in algorithms to speed
up the convergence of algorithms. They proposed many inertial algorithms for solving variational
inequalities, bilevel variational inequalities, equilibrium problems, fixed point problems, split
feasibility problems, and others; see, e.g., [10, 11, 18, 21, 22].

Inspired and motivated by the above works, we introduce four new adaptive modified sub-
gradient extragradient methods for approximating the solutions of bilevel variational inequality
problems in real Hilbert spaces. The operators M involved in our algorithms are Lipschitz contin-
uous and pseudomonotone (the Lipschitz constant does not need to be known) and non-Lipschitz
continuous and pseudomonotone. In addition, we use two new non-monotonic step size criteria
that allow the proposed algorithms to work adaptively. The strong convergence of the iterative
sequences generated by the proposed methods is established under suitable conditions. Some
numerical experiments and applications are provided to verify the computational efficiency of
the proposed algorithms.

This paper is organized as follows. Some basic definitions and lemmas that need to be used
are stated in Sect. 2. The proposed algorithms and their convergence analysis are shown in
Sect. 3. In Sect. 4, some numerical experiments are performed to demonstrate the computational
efficiency of our algorithms. Finally, we conclude this paper with a brief summary in Sect. 5, the
last section.
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2. PRELIMINARIES

In the whole paper, we use the symbol xn→ x (resp., xn ⇀ x) to represent the strong conver-
gence (resp., weak convergence) of the sequence {xn} to x, and use PC : H →C to denote the
metric projection from H onto C, i.e., PC(x) := argmin{‖x− y‖, y ∈C}. It is known that PC
has the following basic properties:

〈x−PC(x),y−PC(x)〉 ≤ 0, ∀x ∈H ,y ∈C. (2.1)

‖PC(x)− y‖2 ≤ ‖x− y‖2−‖x−PC(x)‖2, ∀x ∈H ,y ∈C. (2.2)
‖PC(x)−PC(y)‖2 ≤ 〈PC(x)−PC(y),x− y〉, ∀x ∈H ,y ∈H . (2.3)

Recall that a mapping M : H →H is said to be:
(i) L-Lipschitz continuous with L > 0 if ‖Mx−My‖ ≤ L‖x− y‖, ∀x,y ∈H (If L ∈ (0,1)

then the mapping M is called a contraction).
(ii) α-strongly monotone if there exists a constant α > 0 such that 〈Mx−My,x− y〉 ≥

α‖x− y‖2, ∀x,y ∈H .
(iii) monotone if 〈Mx−My,x− y〉 ≥ 0, ∀x,y ∈H .
(iv) pseudomonotone if 〈Mx,y− x〉 ≥ 0⇒ 〈My,y− x〉 ≥ 0, ∀x,y ∈H .
(v) sequentially weakly continuous if for each sequence {xn} converges weakly to x implies
{Mxn} converges weakly to Mx.

The following lemmas are crucial in the convergence analysis of our algorithms.

Lemma 2.1 ( [16, 23]). Let γ > 0 and α ∈ (0,1]. Let F : H →H be a ζ -strongly monotone
and L-Lipschitz continuous mapping (noting that 0≤ ζ ≤ L). Associating with a nonexpansive
mapping T : H →H , define a mapping T γ : H →H by T γx = (I−αγF)(T x),∀x ∈H .
Then, T γ is contraction provided γ ∈

(
0, 2ζ

L2

)
, that is,

‖T γx−T γy‖ ≤ (1−αη)‖x− y‖, ∀x,y ∈H ,

where η = 1−
√

1− γ (2ζ − γL2) ∈ (0,1).

Lemma 2.2 ( [24]). Let {pn} be a positive sequence, {qn} be a sequence of real numbers, and
{αn} be a sequence in (0,1) such that ∑

∞
n=1 αn = ∞. Assume that

pn+1 ≤ (1−αn)pn +αnqn, ∀n≥ 1.

If limsupk→∞ qnk ≤ 0 for every subsequence {pnk} of {pn} satisfying liminfk→∞ (pnk+1− pnk)≥
0, then limn→∞ pn = 0.

3. MAIN RESULTS

In this section, we present four modified subgradient extragradient methods for solving the
problem (BVIP). The following conditions are assumed to be satisfied in our algorithms.
(C1) The feasible set C is a nonempty, closed, and convex subset of a real Hilbert space H .
(C2) The solution set of the problem (VIP) is nonempty, that is, VI(C,M) 6= /0.
(C3) The mapping F : H →H is LF -Lipschitz continuous and ζF -strongly monotone on H .
(C4) Let {εn} be a positive sequence such that limn→∞

εn
αn

= 0, where {αn} ⊂ (0,1) satisfies
limn→∞ αn = 0 and ∑

∞
n=1 αn = ∞.
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3.1. The first type of subgradient extragradient methods. In this subsection, we introduce
two new numerical algorithms for solving the (BVIP). First, a new iterative scheme with a
non-monotonic step size criterion is given in Algorithm 3.1. We assume that the operator M in
the suggested Algorithm 3.1 satisfies the following condition (C5).
(C5) The operator M : H →H is pseudomonotone, LM-Lipschitz continuous, and sequentially

weakly continuous on C. Choose a nonnegative real sequence {ξn} such that ∑
∞
n=1 ξn <+∞.

The Algorithm 3.1 is formulated as follows.

Algorithm 3.1

Initialization: Take θ > 0, λ1 > 0, µ ∈ (0,1), β ∈ (0,2/(1+ µ)), and γ ∈ (0,2ζF/L2
F).

Select two sequences {εn} and {αn} to satisfy Condition (C4), and choose a sequence {ξn} to
satisfy Condition (C5). Let x0,x1 ∈H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n≥ 1), calculate xn+1 as follows:
Step 1. Compute un = xn +θn(xn− xn−1), where

θn =

 min
{

εn

‖xn− xn−1‖
,θ

}
, if xn 6= xn−1;

θ , otherwise.
(3.1)

Step 2. Compute yn = PC(un−λnMun). If un = yn or Myn = 0, then stop and yn is a solution
of (VIP); Otherwise, go to Step 3.
Step 3. Compute zn = PTn(un−βλnMyn), where the half-space Tn is defined by

Tn = {x ∈H : 〈un−λnMun− yn,x− yn〉 ≤ 0} .
Step 4. Compute xn+1 = zn−αnγFzn, and update

λn+1 =

 min
{

µ
‖un− yn‖2 +‖zn− yn‖2

2〈Mun−Myn,zn− yn〉
,λn +ξn

}
, if 〈Mun−Myn,zn− yn〉> 0;

λn +ξn, otherwise.
(3.2)

Set n := n+1 and go to Step 1.

Remark 3.1. We note here that the inertial calculation criterion (3.1) is easy to implement since
the term ‖xn− xn−1‖ is known before calculating θn. Moreover, it follows from (3.1) and the
assumptions on {αn} that

lim
n→∞

θn

αn
‖xn− xn−1‖= 0.

Indeed, we obtain θn‖xn− xn−1‖ ≤ εn for all n≥ 1, which together with limn→∞
εn
αn

= 0 implies
that limn→∞

θn
αn
‖xn− xn−1‖ ≤ limn→∞

εn
αn

= 0.

Remark 3.2. In Algorithm 3.1, if un = yn or Myn = 0, then stop and yn is a solution of (VIP);
this can be easily verified according to the property of the projection (2.1). On the other hand,
combining the fact that VI(C,M) is a closed and convex set and Conditions (C2) and (C3) yields
a unique solution for (BVIP) (see, e.g., [15, 25]).

The following lemmas are useful in the convergence analysis of Algorithm 3.1.
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Lemma 3.1. Suppose that Condition (C5) holds. Then the sequence {λn} generated by (3.2) is
well defined and limn→∞ λn = λ and λ ∈ [min{µ/LM,λ1},λ1 +Ξ], where Ξ = ∑

∞
n=1 ξn.

Proof. The proof of this lemma is very similar to Lemma 3.1 in [19]. Therefore we omit the
details. �

Lemma 3.2. Assume that Condition (C5) holds. Let {zn} be a sequence generated by Algo-
rithm 3.1. Then, for all p ∈ VI(C,M),

‖zn− p‖2 ≤ ‖un− p‖2−β
∗
n

(
‖un− yn‖2 +‖zn− yn‖2

)
,

where β ∗n = 2−β − β µλn
λn+1

if β ∈ [1,2/(1+µ)) and β ∗n = β − β µλn
λn+1

if β ∈ (0,1).

Proof. From the definition of zn and the property of projection (2.2), we have

‖zn− p‖2 = ‖PTn (un−βλnMyn)− p‖2

≤ ‖un−βλnMyn− p‖2−‖un−βλnMyn− zn‖2

= ‖un− p‖2 +(βλn)
2 ‖Myn‖2−2〈un− p,βλnMyn〉−‖un− zn‖2

− (βλn)
2 ‖Myn‖2 +2〈un− zn,βλnMyn〉

= ‖un− p‖2−‖un− zn‖2−2〈βλnMyn,zn− p〉

= ‖un− p‖2−‖un− zn‖2−2〈βλnMyn,zn− yn〉−2〈βλnMyn,yn− p〉 .

(3.3)

Since p ∈ VI(C,M) and yn ∈C, we obtain 〈Mp,yn− p〉 ≥ 0. By the pseudomonotonicity of the
mapping M, we obtain 〈Myn,yn− p〉 ≥ 0. Thus, inequality (3.3) reduces to

‖zn− p‖2 ≤ ‖un− p‖2−‖un− zn‖2−2〈βλnMyn,zn− yn〉 . (3.4)

Now we estimate 2〈βλnMyn,zn− yn〉. Note that

−‖un− zn‖2 =−‖un− yn‖2−‖yn− zn‖2 +2〈un− yn,zn− yn〉 . (3.5)

In addition,

〈un− yn,zn− yn〉= 〈un− yn−λnMun +λnMun−λnMyn +λnMyn,zn− yn〉
= 〈un−λnMun− yn,zn− yn〉+λn 〈Mun−Myn,zn− yn〉
+ 〈λnMyn,zn− yn〉 .

(3.6)

Since zn ∈ Tn, one has
〈un−λnMun− yn,zn− yn〉 ≤ 0. (3.7)

According to the definition of λn+1, we deduce

〈Mun−Myn,zn− yn〉 ≤
µ

2λn+1
‖un− yn‖2 +

µ

2λn+1
‖zn− yn‖2 . (3.8)

Substituting (3.6), (3.7), and (3.8) into (3.5), we obtain

−‖un− zn‖2 ≤−
(

1− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
+2〈λnMyn,zn− yn〉 ,
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which implies that

−2〈βλnMyn,zn− yn〉 ≤ −β

(
1− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
+β ‖un− zn‖2 . (3.9)

Combining (3.4) and (3.9), we conclude that

‖zn− p‖2 ≤ ‖un− p‖2−β

(
1− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
− (1−β )‖un− zn‖2 .

(3.10)

Note that
‖un− zn‖2 ≤ 2

(
‖un− yn‖2 +‖zn− yn‖2

)
,

which yields that

−(1−β )‖un− zn‖2 ≤−2(1−β )
(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀β ≥ 1.

This together with (3.10) implies

‖zn− p‖2 ≤ ‖un− p‖2−
(

2−β − β µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀β ≥ 1.

On the other hand, if β ∈ (0,1), then we obtain

‖zn− p‖2 ≤ ‖un− p‖2−β

(
1− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀β ∈ (0,1).

This completes the proof. �

Remark 3.3. It follows from Lemmas 3.1 and 3.2 that

lim
n→∞

β
∗
n =

{
2−β −β µ, if β ∈ [1,2/(1+µ));
β −β µ, if β ∈ (0,1).

Thus, there exists a constant n0 such that β ∗n > 0 for all n≥ n0 in Lemma 3.2 always holds.

Lemma 3.3. Suppose that Condition (C5) holds. Let {un} and {yn} be two sequences formulated
by Algorithm 3.1. If there exists a subsequence {unk} of {un} such that {unk} converges weakly
to z ∈H and limk→∞ ‖unk− ynk‖= 0, then z ∈ VI(C,M).

Proof. The proof of this lemma follows that of Lemma 3.3 in [26] and thus it is omitted. �

Theorem 3.1. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn} generated by
Algorithm 3.1 converges strongly to the unique solution of the (BVIP).

Proof. First, we show that the sequence {xn} is bounded. It follows from Lemma 3.2 and
Remark 3.3 that

‖zn− p‖ ≤ ‖un− p‖, ∀n≥ n0. (3.11)

By the definition of un, one has

‖un− p‖ ≤ αn ·
θn

αn
‖xn− xn−1‖+‖xn− p‖. (3.12)
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According to Remark 3.1 we have θn
αn
‖xn− xn−1‖ → 0 as n→ ∞. Therefore, there exists a

constant Q1 > 0 such that
θn

αn
‖xn− xn−1‖ ≤ Q1, ∀n≥ 1. (3.13)

Combining (3.11), (3.12), and (3.13), we obtain

‖zn− p‖ ≤ ‖un− p‖ ≤ ‖xn− p‖+αnQ1, ∀n≥ n0. (3.14)

Using Lemma 2.1 and (3.11), it follows that
‖xn+1− p‖= ‖(I−αnγF)zn− (I−αnγF) p−αnγF p‖

≤ (1−αnη)‖zn− p‖+αnγ‖F p‖

≤ (1−αnη)‖xn− p‖+αnη ·
(

Q1

η
+

γ

η
‖F p‖

)
≤max

{
Q1 + γ‖F p‖

η
,‖xn− p‖

}
, ∀n≥ n0

≤ ·· · ≤max
{

Q1 + γ‖F p‖
η

,‖xn0− p‖
}
,

where η = 1−
√

1− γ
(
2ζF − γL2

F
)
∈ (0,1). This implies that the sequence {xn} is bounded.

We obtain that the sequences {un} and {zn} are also bounded.
Using Lemma 2.1 and the inequality ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈H , one has

‖xn+1− p‖2 = ‖(I−αnγF)zn− (I−αnγF) p−αnγF p‖2

≤ (1−αnη)2 ‖zn− p‖2 +2αnγ 〈F p, p− xn+1〉

≤ ‖zn− p‖2 +αnQ2

(3.15)

for some Q2 > 0. In the light of Lemma 3.2, we obtain

‖xn+1− p‖2 ≤ ‖un− p‖2−β
∗
n
(
‖yn−un‖2 +‖zn− yn‖2)+αnQ2. (3.16)

It follows from (3.14) that

‖un− p‖2 ≤ (‖xn− p‖+αnQ1)
2

= ‖xn− p‖2 +αn
(
2Q1‖xn− p‖+αnQ2

1
)

≤ ‖xn− p‖2 +αnQ3

(3.17)

for some Q3 := supn∈N{2Q1‖xn− p‖+αnQ2
1}> 0. Combining (3.16) and (3.17), we deduce

β
∗
n
(
‖yn−un‖2 +‖zn− yn‖2)≤ ‖xn− p‖2−‖xn+1− p‖2 +αnQ4, (3.18)

where Q4 := Q2 +Q3.
From the definition of un, one sees that

‖un− p‖2 ≤ ‖xn− p‖2 +2θn‖xn− p‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2. (3.19)

Combining (3.11) and (3.15), we obtain

‖xn+1− p‖2 ≤ (1−αnη)‖un− p‖2 +2αnγ 〈F p, p− xn+1〉 . (3.20)
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Substituting (3.19) into (3.20), we obtain

‖xn+1− p‖2 ≤ (1−αnη)‖xn− p‖2 +2αnγ 〈F p, p− xn+1〉
+θn‖xn− xn−1‖(2‖xn− p‖+θ‖xn− xn−1‖)

≤ (1−αnη)‖xn− p‖2 +αnη

[
2γ

η
〈F p, p− xn+1〉+

3Qθn

αnη
‖xn− xn−1‖

]
,

(3.21)

where Q := supn∈N {‖xn− p‖,θ‖xn− xn−1‖}> 0.
Finally, we need to prove that the sequence {‖xn− p‖2} converges to zero. By Lemma 2.2

and (3.21), one assumes that
{
‖xnk− p‖2} is a subsequence of

{
‖xn− p‖2} satisfying

liminf
k→∞

(
‖xnk+1− p‖2−‖xnk− p‖2)≥ 0.

From (3.18), Remark 3.3, and the assumption on {αn}, one infers that

limsup
k→∞

{
β
∗
n
(
‖ynk−unk‖

2 +‖znk− ynk‖
2)}

≤ limsup
k→∞

αnkQ4 + limsup
k→∞

[
‖xnk− p‖2−‖xnk+1− p‖2]

=− liminf
k→∞

[
‖xnk+1− p‖2−‖xnk− p‖2]≤ 0,

which implies that
lim
k→∞
‖ynk−unk‖= 0 and lim

k→∞
‖znk− ynk‖= 0.

Therefore, we obtain
lim
k→∞
‖znk−unk‖= 0. (3.22)

Moreover, we can show that

‖xnk+1− znk‖= αnkγ‖Fznk‖→ 0 as n→ ∞, (3.23)

and
‖xnk−unk‖= αnk ·

θnk

αnk

‖xnk− xnk−1‖→ 0 as n→ ∞. (3.24)

Combining (3.22), (3.23), and (3.24), we obtain

‖xnk+1− xnk‖ ≤ ‖xnk+1− znk‖+‖znk−unk‖+‖unk− xnk‖→ 0 as n→ ∞. (3.25)

Since the sequence {xnk} is bounded, there exists a subsequence {xnk j
} of {xnk}, which converges

weakly to some z ∈H . Moreover,

limsup
k→∞

〈F p, p− xnk〉= lim
j→∞

〈
F p, p− xnk j

〉
= 〈F p, p− z〉.

By (3.24), we obtain unk ⇀ z as k→∞. This together with limk→∞ ‖unk−ynk‖= 0 and Lemma 3.3
yields z ∈ VI(C,M). From the assumption that p is the unique solution of the (BVIP), we obtain

limsup
k→∞

〈F p, p− xnk〉= 〈F p, p− z〉 ≤ 0. (3.26)

Using (3.25) and (3.26), we obtain

limsup
k→∞

〈
F p, p− xnk+1

〉
≤ limsup

k→∞

〈F p, p− xnk〉 ≤ 0. (3.27)
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From limn→∞
θn
αn
‖xn− xn−1‖= 0 and (3.27), we deduce

limsup
k→∞

[
2γ

η

〈
F p, p− xnk+1

〉
+

3Qθnk

αnkη
‖xnk− xnk−1‖

]
≤ 0. (3.28)

Combining ∑
∞
n=1 αnη = ∞, (3.21), and (3.28), in the light of Lemma 2.2, one concludes that

limn→∞ ‖xn− p‖= 0. That is, xn→ p as n→ ∞. This completes the proof. �

Next, we present an iterative scheme (see Algorithm 3.2 below) for solving the (BVIP) with a
pseudomonotone and non-Lipschitz continuous operator. In our Algorithm 3.2, we replace the
condition (C5) in Algorithm 3.1 with the following condition (C6).
(C6) The operator M : H →H is pseudomonotone, uniformly continuous on H , and sequen-

tially weakly continuous on C.
Now we are ready to describe the proposed Algorithm 3.2.

Algorithm 3.2
Initialization: Take θ > 0, δ > 0, ` ∈ (0,1), µ ∈ (0,1), β ∈ (0,2/(1 + µ)), and γ ∈
(0,2ζF/L2

F). Select two sequences {εn} and {αn} to satisfy Condition (C4). Let x0,x1 ∈H
be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n≥ 1), calculate xn+1 as follows:
Step 1. Compute un = xn +θn(xn− xn−1), where θn is defined in (3.1).
Step 2. Compute yn = PC(un−λnMun). If un = yn or Myn = 0, then stop and yn is a solution
of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = PTn(un−βλnMyn), where the half space Tn is defined by

Tn = {x ∈H : 〈un−λnMun− yn,x− yn〉 ≤ 0} ,
and λn := δ`mn and mn is the smallest nonnegative integer m satisfying

δ`m 〈Myn−Mun,yn− zn〉 ≤
µ

2
[
‖un− yn‖2 +‖yn− zn‖2] . (3.29)

Step 4. Compute xn+1 = zn−αnγFzn.
Set n := n+1 and go to Step 1.

Remark 3.4. Suppose that Condition (C6) holds. Let {un} and {yn} be two sequences generated
by Algorithm 3.2. Following the proof of Lemma 3.1 in [27], we can obtain that the Armijo-type
criterion (3.29) is well defined. Moreover, Lemma 3.3 still holds by replacing xn in the proof
process in Lemma 3.2 of [20] with un.

Lemma 3.4. Assume that Condition (C6) hold. Let {zn} be a sequence generated by Algo-
rithm 3.2. Then,

‖zn− p‖2 ≤ ‖un− p‖2−β
∗∗
(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀p ∈ VI(C,M),

where β ∗∗ = 2−β −β µ if β ∈ [1,2/(1+µ)) and β ∗∗ = β −β µ if β ∈ (0,1).

Proof. The conclusion is easily obtained by following the proof of Lemma 3.2. Therefore we
omit the details. �
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Theorem 3.2. Assume that Conditions (C1)–(C4) and (C6) holds. Then the sequence {xn}
generated by Algorithm 3.2 converges strongly to the unique solution of the (BVIP).

Proof. With the aid of Lemma 3.4, we conclude from Theorem 3.1 the desired conclusion
immediately. �

3.2. The second type of subgradient extragradient methods. In this section, we introduce
two new modified subgradient extragradient algorithms to solve the (BVIP). Now, we present
another version of the proposed Algorithm 3.1. The scheme is shown in Algorithm 3.3 below.

Algorithm 3.3

Initialization: Take θ > 0, λ1 > 0, µ ∈ (0,1), β ∈ (1/(2− µ),1/µ) and γ ∈ (0,2ζF/L2
F).

Select two sequences {εn}, and {αn} to satisfy Condition (C4), and choose a sequence {ξn}
to satisfy Condition (C5). Let x0,x1 ∈H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n≥ 1), calculate xn+1 as follows:
Step 1. Compute un = xn +θn(xn− xn−1), where θn is defined in (3.1).
Step 2. Compute yn = PC(un−βλnMun). If un = yn or Myn = 0, then stop and yn is a solution
of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = PHn(un−λnMyn), where the half space Hn is defined by

Hn = {x ∈H : 〈un−βλnMun− yn,x− yn〉 ≤ 0} .
Step 4. Compute xn+1 = zn−αnγFzn. Update the next step size λn+1 by (3.2).
Set n := n+1 and go to Step 1.

Lemma 3.5. Assume that Condition (C5) holds. Let {zn} be a sequence generated by Algo-
rithm 3.3. Then, for all p ∈ VI(C,M),

‖zn− p‖2 ≤ ‖un− p‖2−β
†
n

(
‖un− yn‖2 +‖zn− yn‖2

)
,

where β †
n = 2− 1

β
− µλn

λn+1
if β ∈ (1/(2−µ),1] and β †

n = 1
β
− µλn

λn+1
if β ∈ (1,1/µ).

Proof. From (3.3) and (3.4), we obtain

‖zn− p‖2 ≤ ‖un− p‖2−‖un− zn‖2−2〈λnMyn,zn− yn〉 . (3.30)

Now we estimate 2〈λnMyn,zn− yn〉. Note that

−‖un− zn‖2 =−‖un− yn‖2−‖yn− zn‖2 +2〈un− yn,zn− yn〉 . (3.31)

In addition,
〈un− yn,zn− yn〉

= 〈un− yn−βλnMun +βλnMun−βλnMyn +βλnMyn,zn− yn〉
= 〈un−βλnMun− yn,zn− yn〉+βλn 〈Mun−Myn,zn− yn〉
+ 〈βλnMyn,zn− yn〉 .

(3.32)

Since zn ∈ Hn, one obtains

〈un−βλnMun− yn,zn− yn〉 ≤ 0. (3.33)
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According to the definition of λn+1, we have

〈Mun−Myn,zn− yn〉 ≤
µ

2λn+1
‖un− yn‖2 +

µ

2λn+1
‖zn− yn‖2 . (3.34)

Substituting (3.32), (3.33), and (3.34) into (3.31), we obtain

−‖un− zn‖2 ≤−
(

1− β µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
+2β 〈λnMyn,zn− yn〉 ,

which implies that

−2〈λnMyn,zn− yn〉 ≤ −
(

1
β
− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
+

1
β
‖un− zn‖2 . (3.35)

Combining (3.30) and (3.35), we conclude that

‖zn− p‖2 ≤ ‖un− p‖2−
(

1
β
− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
−
(

1− 1
β

)
‖un− zn‖2 .

(3.36)

Note that
‖un− zn‖2 ≤ 2

(
‖un− yn‖2 +‖zn− yn‖2

)
,

which yields that

−
(

1− 1
β

)
‖un− zn‖2 ≤−2

(
1− 1

β

)(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀β ∈ (0,1].

This together with (3.36) implies

‖zn− p‖2 ≤ ‖un− p‖2−
(

2− 1
β
− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀β ∈ (0,1].

On the other hand, if β > 1, then

‖zn− p‖2 ≤ ‖un− p‖2−
(

1
β
− µλn

λn+1

)(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀β > 1.

This completes the proof. �

Remark 3.5. It follows from Lemmas 3.1 and 3.5 that

lim
n→∞

β
†
n =

{
2− 1

β
−µ, if β ∈ (1/(2−µ),1];

1
β
−µ, if β ∈ (1,1/µ).

Thus, there exists a constant n0 such that β †
n > 0 for all n≥ n0 in Lemma 3.5 always holds.

Theorem 3.3. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn} generated by
Algorithm 3.3 converges strongly to the unique solution of the (BVIP).

Proof. The proof follows almost in the same way as that of Theorem 3.1 but we apply Lemma 3.5
in place of Lemma 3.2. �
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Finally, the last iterative scheme proposed in this paper for solving (BVIP) is shown in
Algorithm 3.4 below.

Algorithm 3.4
Initialization: Take θ > 0, δ > 0, ` ∈ (0,1), µ ∈ (0,1), β ∈ (1/(2− µ),1/µ) and γ ∈
(0,2ζF/L2

F). Select two sequences {εn} and {αn} to satisfy Condition (C4). Let x0,x1 ∈H
be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n≥ 1), calculate xn+1 as follows:
Step 1. Compute un = xn +θn(xn− xn−1), where θn is defined in (3.1).
Step 2. Compute yn = PC(un−βλnMun). If un = yn or Myn = 0, then stop and yn is a solution
of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = PHn(un−λnMyn), where the half space Hn is defined by

Hn = {x ∈H : 〈un−βλnMun− yn,x− yn〉 ≤ 0} ,
and λn := δ`mn and mn is the smallest nonnegative integer m satisfying (3.29).
Step 4. Compute xn+1 = zn−αnγFzn.
Set n := n+1 and go to Step 1.

Lemma 3.6. Assume that Condition (C6) hold. Let {zn} be a sequence generated by Algo-
rithm 3.4. Then,

‖zn− p‖2 ≤ ‖un− p‖2−β
‡
(
‖un− yn‖2 +‖zn− yn‖2

)
, ∀p ∈ VI(C,M),

where β ‡ = 2− 1
β
−µ if β ∈ (1/(2−µ),1] and β ‡ = 1

β
−µ if β ∈ (1,1/µ).

Proof. The proof follows that of Lemma 3.5. So it is omitted here. �

Theorem 3.4. Assume that Conditions (C1)–(C4) and (C6) holds. Then the sequence {xn}
generated by Algorithm 3.4 converges strongly to the unique solution of the (BVIP).

Proof. The proof follows almost in the same way as that of Theorem 3.1 but we apply Lemma 3.6
in place of Lemma 3.2. �

Remark 3.6. We have the following observations for the proposed algorithms.
• Notice that if β = 1, then the proposed Algorithm 3.1 (respectively, Algorithm 3.2) and

Algorithm 3.3 (respectively, Algorithm 3.4) are equivalent. If β = 1 and ξn = 0 in the
proposed Algorithm 3.1, then it degenerates to Algorithm 3.1 introduced in [18].
• The four algorithms obtained in this paper can solve the bilevel pseudomonotone vari-

ational inequality problem, while the algorithms suggested in [13, 15] can only solve
the bilevel monotone variational inequality problem. On the other hand, we replace the
Lipschitz continuity of the mapping M in the literature [13–18] with the uniform continu-
ity of the mapping M in the proposed Algorithms 3.2 and 3.4. Therefore, our suggested
schemes have a wider range of applications. In addition, we make two modifications to
the subgradient extragradient method introduced by Censor, Gibali, and Reich [5–7] and
apply a new non-monotonic step size criterion. These changes allow our algorithms to
converge faster than some known ones (see numerical experiments in Sect. 4).
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• Set F(x) = x− f (x) in Algorithms 3.1–3.4, where the mapping f : H → H is ρ-
contraction. It can be easily verified that the mapping F : H →H is (1+ρ)-Lipschitz
continuous and (1−ρ)-strongly monotone. In this situation, by picking γ = 1, we obtain

xn+1 = zn−αnγFzn = (1−αn)zn +αn f (zn).

Thus, we obtain four new inertial modified subgradient extragradient algorithms for
solving the (VIP) in real Hilbert spaces.

4. NUMERICAL EXPERIMENTS AND APPLICATIONS

In this section, we provide some computational tests to demonstrate the numerical behavior
of the proposed Algorithms 3.1–3.4, and compare them with some algorithms in the literature
[17, 18]. All the programs were implemented in MATLAB 2018a on a Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz computer with RAM 8.00 GB.

4.1. Theoretical examples.

Example 4.1. Consider a mapping F : Rm→ Rm (m = 5) of the form F(x) = Gx+ q, where
G = BBT+D+K and B is an m×m matrix with their entries being generated in (0,1), D is
an m×m skew-symmetric matrix with their entries being generated in (−1,1), K is an m×m
diagonal matrix whose diagonal entries are positive in (0,1) (so G is positive semidefinite),
q ∈ Rm is a vector with entries being generated in (0,1). It is clear that F is LF -Lipschitz
continuous and ζF -strongly monotone with LF = max{eig(G)} and ζF = min{eig(G)}, where
eig(G) represents all eigenvalues of G. Next, we consider the following fractional programming
problem:

min f (x) =
xTQx+aTx+a0

bTx+b0
,

subject to x ∈C :=
{

x ∈ R5 : bTx+b0 > 0
}
,

where

Q =


5 −1 2 0 2
−1 6 −1 3 0
2 −1 3 0 1
0 3 0 5 0
2 0 1 0 4

 , a =


1
2
−1
−2
1

 , b =


1
0
−1
0
1

 , a0 =−2,b0 = 20.

It is easy to check that Q is symmetric and positive definite in R5 and hence f is pseudo-convex
on C. Let M(x) := ∇ f (x), where ∇ f (x) denotes the gradient of the function f (x). It is known
that the mapping M is pseudomonotone and Lipschitz continuous. We compare the proposed
Algorithms 3.1–3.4 with the Algorithm 1 introduced by Thong et al. [17] and the Algorithm 3.2
suggested by Tan, Liu, and Qin [18]. The parameters of all the algorithms are set as follows.

• In the proposed Algorithms 3.1–3.4, we set θ = 0.3, εn = 100/(n+1)2, αn = 1/(n+1),
and γ = 1.7ζF/L2

F . Choose µ = 0.1 and λ1 = 1 for Algorithms 3.1 and 3.3. Pick δ = 1,
`= 0.5, and µ = 0.1 for Algorithms 3.2 and 3.4.
• In the Algorithm 1 introduced by Thong et al. [17], we choose µ = 0.1, λ1 = 1, φ = 1.5,

αn = 1/(n+1), and γ = 1.7ζF/L2
F .
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• In the Algorithm 3.2 suggested by Tan et al. [18], we take θ = 0.3, εn = 100/(n+1)2,
µ = 0.1, λ1 = 1, αn = 1/(n+1), and γ = 1.7ζF/L2

F .

We use Dn = ‖xn− xn−1‖ to measure the error of the nth iteration since we do not know the
exact solution to the problem (BVIP) with M and F given above. The maximum number of
iterations 200 is used as a common stopping criterion for all algorithms. The numerical behavior
of the proposed algorithms with different parameters β and ξn is shown in Fig. 1. Numerical
results of all algorithms with two initial values are reported in Fig. 2.
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(a) Comparison of the proposed Algorithms 3.1 and 3.3
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(b) Comparison of the proposed Algorithms 3.2 and 3.4

FIGURE 1. Numerical behaviors of our algorithms with different β and ξn for
Example 4.1
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(a) x0 = x1 = 10rand(5,1)
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(b) x0 = x1 = 20rand(5,1)

FIGURE 2. Numerical results of all algorithms for Example 4.1
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Example 4.2. We consider an example that appears in the infinite-dimensional Hilbert space
H = L2[0,1] with inner product

〈x,y〉=
∫ 1

0
x(t)y(t)dt, ∀x,y ∈H

and norm

‖x‖=
(∫ 1

0
|x(t)|2dt

)1/2

, ∀x ∈H .

Let r, R be two positive real numbers such that R/(k+1)< r/k < r < R for some k > 1. Take
the feasible set as follows

C = {x ∈H : ‖x‖ ≤ r}.
The operator M : H →H is given by

M(x) = (R−‖x‖)x, ∀x ∈H .

Note that the operator M is pseudomonotone rather than monotone (see [18, Example 2]). Let
F : H →H be an operator defined by

(Fx)(t) = 0.5x(t), t ∈ [0,1].

It is easy to see that F is 0.5-strongly monotone and 0.5-Lipschitz continuous. For the experiment,
we choose R = 1.5, r = 1, and k = 1.1. The solution of the (BVIP) with M and F given above
is x∗(t) = 0. The parameters of all algorithms remain the same as in Example 4.1, but we only
adjust µ = 0.2 for all the algorithms. The maximum number of iterations 50 is used as a common
stopping criterion for all algorithms. Figure 3 shows the behaviors of Dn = ‖xn(t)− x∗(t)‖
generated by all algorithms under two different initial values.
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(a) x0 = x1 = cos(2t)
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(b) x0 = x1 = 5t

FIGURE 3. Numerical results of all algorithms for Example 4.2

Remark 4.1. We have the following observations for Examples 4.1 and 4.2.
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(1) From Fig. 1 and Fig. 3, it can be seen that our algorithms can achieve a faster convergence
speed if the appropriate β is chosen. In addition, the proposed Algorithm 3.1 and
Algorithm 3.3 apply a non-monotonic step size (i.e, ξn 6= 0 in (3.2)), which allows them
to converge faster than when non-increasing step sizes (i.e., ξn = 0 in (3.2)) are applied.

(2) As shown in Figs. 2 and 3, the proposed algorithms have a higher accuracy than the
previously known ones in [17, 18] under the same stopping conditions. These results are
independent of the choice of initial values.

(3) It is worth noting that our Algorithms 3.2 and 3.4 use an Armijo-type step size criterion,
which makes them take more execution time than the proposed Algorithms 3.1 and 3.3
and the algorithms in the literature [17, 18], due to the fact that these algorithms use a
sequence of steps that can be automatically updated in each iteration using previously
known information.

(4) Note that the operator M in Example 4.2 is pseudomonotone rather than monotone. The
algorithms proposed in [13, 15] for solving the bilevel monotone variational inequality
problem will not be applicable in this case.

In summary, the methods proposed in this paper are useful, efficient, and robust.

4.2. Application to optimal control problems. Next, we use the proposed algorithms to solve
the variational inequality problem (VIP) that appears in optimal control problems. Assume
that L2 ([0,T ],Rm) represents the square-integrable Hilbert space with inner product 〈p,q〉 =∫ T

0 〈p(t),q(t)〉dt and norm ‖p‖=
√
〈p, p〉. The optimal control problem is described as follows:

p∗(t) ∈ Argmin{g(p) : p ∈V},
g(p) = Φ(x(T )),

V =
{

p(t) ∈ L2 ([0,T ],Rm) : pi(t) ∈
[
p−i , p+i

]
, i = 1,2, . . . ,m

}
,

s.t. ẋ(t) = Q(t)x(t)+W (t)p(t), 0≤ t ≤ T, x(0) = x0,

(4.1)

where g(p) means the terminal objective function, Φ is a convex and differentiable defined on
the attainability set, p(t) denotes the control function, V represents a set of feasible controls
composed of m piecewise continuous functions, x(t) stands for the trajectory, and Q(t) ∈ Rn×n

and W (t) ∈ Rn×m are given continuous matrices for every t ∈ [0,T ]. By the solution of the
problem (4.1), we mean a control p∗(t) and a corresponding (optimal) trajectory x∗(t) such that
its terminal value x∗(T ) minimizes the objective function g(p). It is known that the optimal
control problem (4.1) can be transformed into a variational inequality problem (see [1, 28]). We
first use the classical Euler discretization method to decompose the optimal control problem (4.1)
and then apply the proposed algorithms to solve the variational inequality problem corresponding
to the discretized version of the problem (see [1, 28] for more details).

Example 4.3 (Rocket car [28]).

minimize 0.5
(
(x1(5))

2 +(x2(5))
2
)
,

subject to ẋ1(t) = x2(t), ẋ2(t) = p(t), ∀t ∈ [0,5],

x1(0) = 6, x2(0) = 1, p(t) ∈ [−1,1].



REVISITING INERTIAL SUBGRADIENT EXTRAGRADIENT ALGORITHMS FOR BVIPS 441

The exact optimal control of Example 4.3 is p∗(t) = 1 if t ∈ (3.517,5] and p∗(t) = −1 if
t ∈ (0,3.517]. We compare the proposed methods with the Algorithm (31) (in short, TLDCR
Alg. (31)) introduced by Thong et al. [17] and the Algorithm (3.39) (in short, TLQ Alg. (3.39))
proposed by Tan, Liu, and Qin [18]. The parameters of all algorithms are set as follows.

• In the proposed Algorithms 3.1–3.4, we set N = 100, θ = 0.01, εn =
10−4

(n+1)2 , αn =
10−4

n+1 ,

F(x)= x− f (x), f (x)= 0.1x, and γ = 1. Choose µ = 0.1, λ1 = 0.4, and ξn = 1/(n+1)1.1

for Algorithms 3.1 and 3.3. Pick δ = 2, `= 0.5, and µ = 0.1 for Algorithms 3.2 and 3.4.
• In the TLDCR Alg. (31), we choose N = 100, µ = 0.1, λ1 = 0.4, φ = 1.5, and αn =

10−4

n+1 .

• In the TLQ Alg. (3.39), we take N = 100, θ = 0.01, εn = 10−4

(n+1)2 , µ = 0.1, λ1 = 0.4,

αn =
10−4

n+1 , and f (x) = 0.1x.
The initial controls p0(t) = p1(t) are randomly generated in [−0.5,0.5]. The stopping criterion is
either Dn = ‖un− yn‖1 ≤ 10−4, or the maximum number of iterations which is set to 300. Figure
4 shows the approximate optimal control and the corresponding trajectories of the suggested
Algorithm 3.1 (with β = 1.5).
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(b) Optimal trajectories

FIGURE 4. Numerical results of the proposed Algorithm 3.1 for Example 4.3

Example 4.4 (see [29]).

minimize − x1(2)+(x2(2))
2 ,

subject to ẋ1(t) = x2(t), ẋ2(t) = p(t), ∀t ∈ [0,2],

x1(0) = 0, x2(0) = 0, p(t) ∈ [−1,1].

The exact optimal control of Example 4.4 is p∗(t) = 1 if t ∈ [0,1.2) and p∗(t) = −1 if t ∈
(1.2,2]. The approximate optimal control and the corresponding trajectories of the suggested
Algorithm 3.2 (with β = 1.5) are plotted in Fig. 5.

The numerical results of all algorithms for Examples 4.3 and 4.4 are shown in Fig. 6 and
Table 1.
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FIGURE 5. Numerical results of the proposed Algorithm 3.2 for Example 4.4
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FIGURE 6. Error estimates of all algorithms for Examples 4.3 and 4.4

Remark 4.2. From Fig. 4, Fig. 5, Fig. 6, and Table 1, it can be seen that the suggested algorithms
can be applied to solve optimal control problems. Notice that the proposed Algorithm 3.1 (resp.,
Algorithm 3.2) with β = 1.5 and the proposed Algorithm 3.3 (resp., Algorithm 3.4) with β = 0.8
converges faster than the proposed Algorithm 3.1 (resp., Algorithm 3.2) with β = 1. That is,
the proposed algorithms can obtain a faster convergence speed if the appropriate β is chosen.
Moreover, the proposed schemes outperform the existing methods in the literature [17, 18].

5. CONCLUSIONS

In this paper, we proposed four new modified subgradient extragradient methods for solv-
ing bilevel pseudomonotone variational inequality problems in real Hilbert spaces. Our algo-
rithms work adaptively and do not require the prior knowledge of the Lipschitz constant of the
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TABLE 1. Numerical results of all algorithms for Examples 4.3 and 4.4

Algorithms
Example 4.3 Example 4.4

Iter. Time (s) Dn Iter. Time (s) Dn

Our Alg. 3.1, β = 1.5 129 0.0593 9.67E-05 207 0.0710 9.65E-05
Our Alg. 3.2, β = 1.5 93 0.0850 9.95E-05 96 0.0389 9.96E-05
Our Alg. 3.3, β = 0.8 156 0.0646 9.56E-05 252 0.1089 9.99E-05
Our Alg. 3.4, β = 0.8 96 0.0872 9.73E-05 124 0.0812 9.87E-05
Our Alg. 3.1 (3.3), β = 1 164 0.0555 9.84E-05 257 0.0894 9.79E-05
Our Alg. 3.2 (3.4), β = 1 113 0.0835 9.93E-05 132 0.0563 9.92E-05
TLQ Alg. (3.39) 300 0.1181 2.77E-02 300 0.1291 1.48E-02
TLDCR Alg. (31) 300 0.1023 3.04E-02 300 0.1075 6.72E-03

pseudomonotone mapping. The strong convergence theorems of the proposed algorithms are
established under some mild conditions imposed by the mappings and parameters. Finally, the
theoretical results are verified by some numerical experiments and applications. It would be
interesting if the algorithms proposed in this paper could be applied to some practical bilevel
optimization problems.
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