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STRONG CONVERGENCE OF INERTIAL MANN ALGORITHMS FOR SOLVING
HIERARCHICAL FIXED POINT PROBLEMS
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Institute of Fundamental and Frontier Sciences,
University of Electronic Science and Technology of China, Chengdu, China

Abstract. The paper introduces two inertial Mann algorithms to find solutions of hierarchical fixed point
problems of nonexpansive mappings. We obtain strong convergence theorems in Hilbert spaces under
suitable conditions. Some numerical examples are provided to illustrate the numerical behavior of the
algorithms and numerical results show that our proposed algorithms are efficient and robust.
Keywords. Hierarchical fixed point problem; Inertial Mann algorithm; Nonexpansive mapping; Strong
convergence; Viscosity method.

1. INTRODUCTION

Throughout this paper, C is assumed to be a nonempty convex and closed set in a real Hilbert
space H. The inner product and the corresponding induced norm are represented by 〈·, ·〉 and
‖ · ‖, respectively. Let I be the identity mapping on C and let PC be the metric projection of H
onto C. To begin with, let us recall the following concepts in convex and nonlinear analysis.
For all x,y ∈ C, a mapping A : C→ H is said to be (i) monotone iff 〈Ax−Ay,x− y〉 ≥ 0; (ii)
strongly monotone iff 〈Ax−Ay,x− y〉 ≥ k‖x− y‖2, where k is a real constant; (iii) Lipschitzian
if ‖Ax−Ay‖ ≤ L‖x− y‖, where L > 0 is some real number. Let us also recall that a mapping
T : C→C is said to be (i) contraction if ‖T x−Ty‖ ≤ ρ‖x− y‖, where ρ is a real number in
(0,1); (ii) nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖. The set of fixed points of T is denoted by
Fix(T ), that is, Fix(T ) := {x ∈C : T x = x}.

In 2006, Moudafi and Mainge [11] introduced the following hierarchical fixed point problem
(in short, HFPP)

find x∗ ∈ Fix(T ) such that 〈x∗− x,(I−S)x∗〉 ≤ 0, ∀x ∈ Fix(T ) (HFPP)

for a nonexpansive mapping T with respect to another nonexpansive mapping S on C. Let
Ω :=

{
x∗ ∈C :

(
PFix(T ) ◦S

)
x∗ = x∗

}
denote the solution set of (HFPP). It is not hard to check

that solving (HFPP) is equivalent to the fixed point problem:

find x∗ ∈C such that x∗ =
(
PFix(T ) ◦S

)
x∗ .

∗Corresponding author.
E-mail addresses: bingtan72@gmail.com (B. Tan), jyulsx@163.com (S. Li).
Received November 20, 2019; Accepted October 18, 2020.

c©2020 Journal of Nonlinear and Variational Analysis

337



338 B. TAN, S. LI

In addition, we can prove that (HFPP) is equivalent to the variational inclusion problem:

find x∗ ∈C such that 0 ∈ NFix(T )x
∗+(I−S)x∗ ,

where NFix(T ) is the normal cone of Fix(T ), which is defined by

NFix(T ) =

{
{u ∈ H : 〈u,y− x〉 ≤ 0 ,∀y ∈ Fix(T )}, if x ∈ Fix(T ) ,
/0 , otherwise .

Problem (HFPP) covers hierarchical minimization problems, monotone variational inequality
on fixed point sets, minimization problems over equilibrium constraints. Recently, some authors
have studied the existence of hierarchical fixed points and their iterative algorithms; see, e.g.,
[5, 11, 12, 13, 20, 26] and the references therein. By setting S = I− γA, where mapping A is
η-Lipschitzian and k-strongly monotone with γ ∈

(
0,2k/η2), one finds that (HFPP) is reduced

to the so-called hierarchical variational inequality problem:

find x∗ ∈ Fix(T ) such that 〈A(x∗) ,x− x∗〉 ≥ 0 , ∀x ∈ Fix(T ) .

In order to solve (HFPP), Moudafi [12] introduced the following Mann iterative algorithm

xn+1 = (1−ψn)xn +ψn ((1−νn)T xn +νnSxn) , ∀n≥ 0 , (1.1)

where {νn} and {ψn} are two sequences in (0,1). It is worth mentioning that some algorithms
in signal processing and image reconstruction can be written as the Mann iteration and that the
main feature of its corresponding convergence theorems provides a unified frame for analyzing
various concrete algorithms; see, e.g., [6, 15, 16, 22, 23, 27].

For solving problem (HFPP), using the iterative algorithm (1.1), Moudafi [12] proved a
weak convergence theorem. In particular, when mapping S is a contraction, a special case of
nonexpansive mappings, Yao and Liou obtained a strong convergence result [25]. Recently,
Mainge and Moudafi [13] introduced the following iterative algorithm (1.2):

Algorithm 1 (Viscosity iterative algorithm (VIA)).

xn+1 = ψn f (xn)+(1−ψn)(νnSxn +(1−νn)T xn) , ∀n≥ 0 , (1.2)

where {νn} and {ψn} are two sequences in (0,1), and mapping f : C→C is a contraction. They
proved that under appropriate conditions the iterative sequence {xn} generated by (1.2) converges
strongly to x∗ ∈ Fix(T ) which solves (HFPP). Motivated and inspired by [13], Yao, Liou and
Marino [26] introduced a two-step iterative approach to solve the (HFPP):

Algorithm 2 (Two-step iterative algorithm (TWIA)).{
yn = νnSxn +(1−νn)xn ,

xn+1 = ψn f (xn)+(1−ψn)Tyn , ∀n≥ 0 .
(1.3)

They proved that under appropriate assumptions iterative algorithm (1.3) converges strongly to
some fixed point of T , which solves (HFPP). It is worth noting that (1.3) is different from (1.2).

In view of the applications to the signal processing and the image reconstruction, it is important
and interesting to construct some new iterative algorithms for solving (HFPP). In general, the
convergence rate of Mann algorithm is slow. The fast convergence of algorithms is required in
many practical applications. In particular, an inertial type extrapolation was first proposed by
Polyak [14] as an acceleration process. In recent years, some authors constructed various fast
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iterative algorithms with the aid of inertial extrapolation techniques, such as, inertial Mann algo-
rithms [19], inertial forward-backward splitting algorithms [17], inertial extragradient algorithms
[9], inertial gradient algorithms [18], inertial projection algorithms [10, 21] and fast iterative
shrinkage-thresholding algorithm (FISTA) [3].

Inspired and motivated by the above results, we introduce two inertial iterative algorithms for
solving (HFPP). Strong convergence theorems are established in the framework of real Hilbert
spaces. We also give some numerical examples to illustrate the computational performance
of our proposed algorithms over some previously known algorithms in [13, 26]. Our results
improves the corresponding results of Mainge and Moudafi [13], Yao et al. [26], Dong et al. [7].

This paper is organized as follows. Section 2 gives the mathematical preliminaries. Section 3
and Section 4 present two algorithms for solving (HFPP) and analyze their convergence. Section 5
numerically compares the behaviors of the proposed algorithms and the existing ones. Section 6,
the last section, concludes the paper with a brief summary.

2. PRELIMINARIES

Throughout this paper, we denote the strong and weak convergence of a sequence {xn}
to a point x ∈ H by xn → x and xn ⇀ x, respectively. A set-valued operator F : H → 2H

is said to be (i) monotone if 〈m− n,x− y〉 ≥ 0, ∀m ∈ F(x),n ∈ F(y); (ii) maximal mono-
tone if the graphF := {(x,y) ∈ H ×H : y ∈ F(x)} is not properly contained in the graph
of any other monotone operator. An operator sequence {Fn} is said to be graph conver-
gent to F if {graph{Fn}} converges to graph{F} in the Kuratowski-Painleve’s sense, i.e.,
limsupn graph{Fn} ⊂ graph{F} ⊂ liminfn graph{Fn}.

The following lemmas will be needed in the proof of our main theorems.

Lemma 2.1. [4] (i) Let A be a maximal monotone operator. Then (t−1A) graph converges to
NA−1(0) as t→ 0 provided that A−1(0) 6= /0.

(ii) Let {At} be a sequence of maximal monotone operators. If B is a Lipschitz maximal
monotone operator, then At +B is maximal monotone. Furthermore, if {At} graph converges to
A, then A is maximal monotone and {At +B} graph converges to A+B.

Lemma 2.2. [2] Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C→H be a nonexpansive mapping. Let {xn} be a sequence in C and x ∈H such that xn ⇀ x
and T xn− xn→ 0 as n→+∞. Then x ∈ Fix(T ).

Lemma 2.3. [24] Let {an} be an iterative sequence of nonnegative real numbers such that
an+1 ≤ µnτn +υn +(1−µn)an, where {µn} is a sequence in (0,1) and {τn} is a real sequence.
Assume that ∑

∞
n=1 υn < ∞. Then, the following results hold:

(i) If τn ≤M for some M ≥ 0, then {an} is a bounded sequence.
(ii) If ∑

∞
n=1 µn = ∞ and lim supn→∞ τn ≤ 0, then limn→∞ an = 0.

3. THE INERTIAL VISCOSITY ITERATIVE ALGORITHM

Theorem 3.1. Let C be a nonempty convex closed set in a real Hilbert space H. Let f : C→C be
a ρ-contraction mapping with ρ ∈ [0,1). Let S,T : C→C be two nonexpansive mappings. Let
{νn} and {ψn} be two sequences in (0,1). Suppose that the following conditions are satisfied:

(P1) limn→∞ νn = 0 and limn→∞
ψn
νn

= 0;
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(P2) limn→∞ ψn = 0 and ∑ψn = ∞;
(P3) limn→∞

νn−νn−1
ν2

n ψn
= 0 and limn→∞

ψn−ψn−1
νnψn

= 0;
(P4) Fix(T )∩ intC 6= /0;
(P5) limn→∞

δn‖xn−xn−1‖
νnψn

= 0.

Set x−1,x0 ∈C arbitrarily. Define a sequence {xn} by the following algorithm:

Algorithm 3 (Inertial viscosity iterative algorithm (IVIA)).{
wn = xn +δn(xn− xn−1) ,

xn+1 = ψn f (xn)+(1−ψn)(νnSwn +(1−νn)Twn) , ∀n≥ 0 .
(3.1)

Then every weak cluster point of {xn} defined by (3.1) belongs to Ω, the solution set of (HFPP).

Proof. First, we prove that the sequence {xn} is bounded. Take u ∈ Fix(T ). From (3.1), we have

‖xn+1−u‖
≤ ‖ψn ( f (xn)−u)+(1−ψn)(νn(Swn−u)+(1−νn)(Twn−u))‖
≤ ψn‖ f (xn)− f (u)‖+ψn‖ f (u)−u‖+(1−ψn)(νn‖Swn−u‖+(1−νn)‖Twn−u‖)
≤ ψnρ‖xn−u‖+ψn‖ f (u)−u‖+(1−ψn)‖wn−u‖

≤ (1− (1−ρ)ψn)‖xn−u‖+(1−ρ)ψn
‖ f (u)−u‖

1−ρ
+(1−ψn)δn‖xn− xn−1‖ .

(3.2)

Let

M := 2max
{
‖ f (u)−u‖

1−ρ
,sup

n>0

(1−ψn)δn

(1−ρ)ψn
‖xn− xn−1‖

}
.

From (3.2), one obtains

‖xn+1−u‖ ≤ (1− (1−ρ)ψn)‖xn−u‖+(1−ρ)ψnM .

From Lemma 2.3, one concludes that the sequence {xn} is bounded. From (3.1), one has

xn+1− xn =ψn ( f (xn)− f (xn−1))

+(1−ψn)(νn (Swn−Swn−1)+(1−νn)(Twn−Twn−1))

+(ψn−1−ψn)(− f (xn−1)+νn−1Swn−1 +(1−νn−1)Twn−1)

+(1−ψn)(νn−νn−1)(Swn−1−Twn−1) .

Therefore,

‖xn+1− xn‖ ≤ψnρ ‖xn− xn−1‖+(1−ψn)‖wn−wn−1‖
+ |ψn−1−ψn| ‖− f (xn−1)+νn−1Swn−1 +(1−νn−1)Twn−1‖
+(1−ψn) |νn−νn−1| ‖Swn−1−Twn−1‖ .

Since {xn} is bounded, one concludes that {wn}, { f (xn)}, {Swn} and {Twn} are also bounded.
Consequently, one infers that

‖xn+1− xn‖ ≤(1− (1−ρ)ψn)‖xn− xn−1‖+M1 (|ψn−1−ψn|+ |νn−νn−1|)
+δn‖xn− xn−1‖+δn−1‖xn−1− xn−2‖ ,

(3.3)
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where M1 := supn≥0{‖− f (xn−1)+νn−1Swn−1 +(1−νn−1)Twn−1‖ ,‖Swn−1−Twn−1‖}. From
(3.3), one has

1
νn
‖xn+1− xn‖ ≤

(
1− (1−ρ)ψn

)( 1
νn
‖xn− xn−1‖

)
+M1

( |ψn−1−ψn|
νn

+
|νn−νn−1|

νn

)
+

δn

νn
‖xn− xn−1‖+

δn−1

νn
‖xn−1− xn−2‖

≤(1− (1−ρ)ψn)
( 1

νn−1
‖xn− xn−1‖

)
+M1

( |ψn−1−ψn|
νn

+
|νn−νn−1|

νn

)
+(1− (1−ρ)ψn)

( 1
νn
‖xn− xn−1‖−

1
νn−1

‖xn− xn−1‖
)

+
δn

νn
‖xn− xn−1‖+

δn−1

νn
‖xn−1− xn−2‖

≤(1− (1−ρ)ψn)
( 1

νn−1
‖xn− xn−1‖

)
+(1−ρ)ψn

( 1
ψn

∣∣∣∣ 1
νn
− 1

νn−1

∣∣∣∣
+

1
νnψn

|νn−νn−1|+
1

νnψn
|ψn−ψn−1|

) M2

(1−ρ)

+(1−ρ)ψn

(
δn

(1−ρ)νnψn
‖xn− xn−1‖+

δn−1

(1−ρ)νnψn
‖xn−1− xn−2‖

)
,

where M2 is a positive constant such that supn≥0 {‖xn− xn−1‖ ,M1} ≤M2. Using (P1), (P2), (P3)
and (P5), in the light of Lemma 2.3, we deduce that

1
νn
‖xn+1− xn‖→ 0 , as n→ ∞ . (3.4)

Thus, ‖xn+1− xn‖ → 0. By using (3.1), (P1) and (P2), one concludes that ‖xn+1−Twn‖ → 0.
Therefore, ‖xn−Twn‖ ≤ ‖xn− xn+1‖+‖xn+1−Twn‖ → 0 as n→ ∞. By the definition of wn
and (P5), one has ‖wn− xn‖→ 0 as n→ ∞. Thus,

‖xn−T xn‖ ≤ ‖xn−Twn‖+‖Twn−T xn‖
≤ ‖xn−Twn‖+‖wn− xn‖→ 0 , as n→ ∞ .

(3.5)

Without loss of the generality, one may assumes that {xn}⇀ x∗. Combining (3.5) and Lemma 2.2,
we see that x∗ ∈ Fix(T ). Again by using (3.1), one obtains

xn+1−wn = ψn ( f (xn)−wn)+(1−ψn)(νn (Swn−wn)+(1−νn)(Twn−wn)) ,

that is,
wn− xn+1

(1−ψn)νn
+

ψnδn(xn− xn−1)

(1−ψn)νn
=

ψn

(1−ψn)νn
(I− f )xn +(I−S)wn +

1−νn

νn
(I−T )wn .

Lemma 2.1 assures that the operator sequence {1−νn
νn

(I−T )} graph converges to NFix(T ) and
{ ψn
(1−ψn)νn

(I− f )} graph converges to NC, which allows us to infer, in the light of a result in

[1], that operator (I− S)+ 1−νn
νn

(I− T )+ ψn
(1−ψn)νn

(I− f ) graph converges to (I− S)+NC +

NFix(T ). The latter coincides with (I−S)+NFix(T ) thanks to the condition (P4). Since wn−xn+1
(1−ψn)νn

+
ψnδn(xn−xn−1)

(1−ψn)νn
→ 0 and the graph of (I−S)+NFix(T ) is weakly-strongly closed, we finally obtain

0 ∈ (I−S)x∗+NFix(T )x∗, that is, x∗ solves problem (HFPP). �
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Remark 3.1. (i) We remark here that condition (P5) is easily implemented in numerical
computation since the value of ‖xn− xn−1‖ is known before choosing δn. Therefore,
parameter δn can be chosen such that 0≤ δn ≤ δ̂n, where

δ̂n =

{
min

{
ξn

‖xn−xn−1‖ ,δ
}
, if xn 6= xn−1 ;

δ , otherwise ,
(3.6)

and {ξn} is a positive sequence such that limn→∞
ξn

νnψn
= 0.

(ii) Prototypes for the iterative parameters are, for example, νn =
1
na , ψn =

1
nb and ξn =

1
nc

provided that a ∈ (0,1/2), b ∈ (a,1−a) and c ∈ (a+b,∞).

Theorem 3.2. Let C be a nonempty convex closed set in a real Hilbert space H. Let f : C→C be
a ρ-contraction mapping with ρ ∈ [0,1). Let S,T : C→C be two nonexpansive mappings. Let
{νn} and {ψn} be two sequences in (0,1). Suppose that the following conditions are satisfied:

(P1) limn→∞ νn = 0 and limn→∞
ψn
νn

= 0;
(P2) limn→∞ ψn = 0 and ∑ψn = ∞;
(P3) limn→∞

νn−νn−1
ν2

n ψn
= 0 and limn→∞

ψn−ψn−1
νnψn

= 0;
(P4) Fix(T )∩ intC 6= /0;
(P5) limn→∞

δn‖xn−xn−1‖
νnψn

= 0;

(P6) There exist two positive constants k and λ such that ‖x−T x‖≥ k Dist(x,Fix(T ))λ , where
Dist(x,Fix(T )) := infy∈Fix(T ) ‖y− x‖;

(P7) limn→∞
ν

1+1/λ
n
ψn

= 0.

Then the sequence {xn} generated by (3.1) converges to x∗ = PΩ f (x∗) in norm.

Proof. From (3.1), we can write

xn+1− x∗ =ψn ( f (xn)− x∗)+(1−ψn)(νn (Swn− x∗)+(1−νn)(Twn− x∗))

=(ψn ( f (xn)− f (x∗))+(1−ψn)(νn (Swn−Sx∗)+(1−νn)(Twn− x∗)))

+(ψn( f (x∗)− x∗)+νn (1−ψn)(Sx∗− x∗)) .

An elementary computation yields ‖a+b‖2−2〈b,a+b〉= ‖a‖2−‖b‖2,∀a,b ∈ H. It follows
that

‖xn+1− x∗‖2−2〈ψn( f (x∗)− x∗)+νn (1−ψn)(Sx∗− x∗),xn+1− x∗〉

≤ ‖ψn ( f (xn)− f (x∗))+(1−ψn)(νn (Swn−Sx∗)+(1−νn)(Twn− x∗))‖2 .

By convexity of the mapping x→‖x‖2, one sees that

‖xn+1− x∗‖2−2〈ψn( f (x∗)− x∗)+νn (1−ψn)(Sx∗− x∗),xn+1− x∗〉

≤ ψn ‖ f (xn)− f (x∗)‖2 +(1−ψn)‖νn (Swn−Sx∗)+(1−νn)(Twn− x∗)‖2

≤ ψn ‖ f (xn)− f (x∗)‖2 +(1−ψn)
(
νn ‖Swn−Sx∗‖2 +(1−νn)‖Twn− x∗‖2 )

≤ ψnρ
2 ‖xn− x∗‖2 +(1−ψn)

(
νn ‖wn− x∗‖2 +(1−νn)‖wn− x∗‖2 )

≤
(
1−
(
1−ρ

2)
ψn
)
‖xn− x∗‖2 +2δn〈xn− xn−1,wn− x∗〉 ,
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which yields

‖xn+1− x∗‖2 ≤
(
1−
(
1−ρ

2)
ψn
)
‖xn− x∗‖2 +2δn〈xn− xn−1,wn− x∗〉

+2ψn 〈 f (x∗)− x∗,xn+1− x∗〉+2νn (1−ψn)〈Sx∗− x∗,xn+1− x∗〉 .
(3.7)

From condition (P5) and the fact that {wn} is bounded, we have

limsup
n→∞

2δn〈xn− xn−1,wn− x∗〉= 0 . (3.8)

By Theorem 3.1, we have that any weak cluster point of {xn} is in Ω. Therefore, it is easy
conclude from x∗ = PΩ f (x∗) that

limsup
n→∞

〈 f (x∗)− x∗,xn− x∗〉 ≤ 0 . (3.9)

On the other hand, we have

〈Sx∗− x∗,xn+1− x∗〉=
〈
Sx∗− x∗,PFix(T )xn+1− x∗

〉
+
〈
Sx∗− x∗,xn+1−PFix(T )xn+1

〉
.

Since PFix(T )xn+1 ∈ Fix(T ), according to (HFPP), we obtain〈
Sx∗− x∗,PFix(T )xn+1− x∗

〉
≤ 0 ,

which further yields that

〈Sx∗− x∗,xn+1− x∗〉 ≤
〈
Sx∗− x∗,xn+1−PFix(T )xn+1

〉
≤ ‖Sx∗− x∗‖‖xn+1−PFix(T )xn+1‖
= ‖Sx∗− x∗‖ Dist(xn+1,Fix(T )) .

Consequently, one concludes from (P6) that

〈Sx∗− x∗,xn+1− x∗〉 ≤ k−1/λ‖Sx∗− x∗‖ ‖T xn+1− xn+1‖1/λ . (3.10)

In view of (3.1), we have
‖xn+1−T xn+1‖ ≤ ψn‖ f (xn)‖+νn‖Swn−Twn‖+‖xn+1−wn‖

≤ k1 (νn +ψn +‖xn+1−wn‖) ,

where k1 := supn≥0{‖ f (xn)‖,‖Swn−Twn‖,1}. This together with (3.10) implies that

〈Sx∗− x∗,xn+1− x∗〉 ≤ k2 (νn +ψn +‖xn+1−wn‖)1/λ (3.11)

for a positive constant k2 := k1/λ

1 k−1/λ‖Sx∗− x∗‖.
Now, in the light of the assumptions (P1), (P5), (P7) and (3.4), we obtain

lim
n→∞

νn

ψn
(νn +ψn +‖xn+1−wn‖)1/λ = lim

n→∞

ν
1+1/λ
n

ψn

(
1+

ψn

νn
+
‖xn+1−wn‖

νn

)1/λ

= lim
n→∞

ν
1+1/λ
n

ψn
= 0 ,

which by (3.11) leads to

limsup
n→∞

νn

ψn
〈Sx∗− x∗,xn+1− x∗〉 ≤ 0 . (3.12)

Finally, by (3.7), (3.8), (3.9), (3.12) and using Lemma 2.3, we conclude that the sequence {xn}
converges to x∗ in norm. This completes the proof. �
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Remark 3.2. (i) Prototypes for the iterative parameters are, for instance, νn =
1
na , ψn =

1
nb

and ξn = 1
nc provided that a ∈

(
0, 1

2+1/λ

]
, b ∈ (a,a(1+ 1/λ )) and c ∈ (a+ b,∞) or

a ∈
( 1

2+1/λ
,1/2

)
, b ∈ (a,1−a) and c ∈ (a+b,∞).

(ii) When δn = 0 in (3.1), then Algorithm IVIA (3.1) becomes the Algorithm VIA (1.2)
proposed by Mainge and Moudafi [13].

4. THE INERTIAL TWO-STEP ITERATIVE ALGORITHM

Theorem 4.1. Let C be a nonempty convex closed set in a real Hilbert space H. Let f : C→C be
a ρ-contraction mapping with ρ ∈ [0,1). Let S,T : C→C be two nonexpansive mappings. Let
{νn} and {ψn} be two sequences in (0,1). Suppose that the following conditions are satisfied:

(C1) limn→∞ ψn = 0 and ∑
∞
n=1 ψn = ∞;

(C2) limn→∞ νn = 0 and limn→∞
ψn
νn

= 0;
(C3) limn→∞

1
ψn

∣∣ 1
νn
− 1

νn−1

∣∣= 0 and limn→∞
1
νn

∣∣1− ψn−1
ψn

∣∣= 0;
(C4) Fix(T )∩ intC 6= /0;
(C5) limn→∞

δn‖xn−xn−1‖
νnψn

= 0.

Set x−1,x0 ∈C arbitrarily. Define a sequence {xn} by the following algorithm:

Algorithm 4 (Inertial Two-step iterative algorithm (ITWIA)).
wn = xn +δn(xn− xn−1) ,

yn = νnSwn +(1−νn)wn ,

xn+1 = ψn f (xn)+(1−ψn)Tyn , ∀n≥ 0 .
(4.1)

Then every weak cluster point of {xn} created by (4.1) belongs to the solution set Ω of (HFPP).

Proof. First, we prove that the sequence {xn} is bounded. Take u ∈ Fix(T ). From (4.1), we have
‖wn−u‖ ≤ ‖xn−u‖+δn‖xn− xn−1‖, and

‖xn+1−u‖
≤‖ψn f (xn)+(1−ψn)Tyn−u‖
≤ψn ‖ f (xn)− f (u)‖+ψn‖ f (u)−u‖+(1−ψn)‖Tyn−u‖
≤ψnρ ‖xn−u‖+ψn‖ f (u)−u‖+(1−ψn)‖yn−u‖
≤ψnρ ‖xn−u‖+ψn‖ f (u)−u‖+(1−ψn)νn ‖Swn−u‖+(1−ψn)(1−νn)‖wn−u‖
≤ψnρ ‖xn−u‖+ψn‖ f (u)−u‖+(1−ψn)‖wn−u‖

=(1− (1−ρ)ψn)‖xn−u‖+(1−ρ)ψn
‖ f (u)−u‖

1−ρ
+(1−ψn)δn‖xn− xn−1‖ .

(4.2)

Let

M := 2max
{
‖ f (u)−u‖

1−ρ
,sup

n>0

(1−ψn)δn

(1−ρ)ψn
‖xn− xn−1‖

}
.

Using (4.2), one has

‖xn+1−u‖ ≤ (1− (1−ρ)ψn)‖xn−u‖+(1−ρ)ψnM .
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By Lemma 2.3, we get that the sequence {xn} is bounded and hence the sequences { f (xn)},
{yn}, {T xn} and {Tyn} are also bounded. From (4.1), we obtain

‖xn+1− xn‖ ≤ψn ‖ f (xn)− f (xn−1)‖+ |ψn−ψn−1| ‖ f (xn−1)‖
+(1−ψn)‖Tyn−Tyn−1‖+ |ψn−ψn−1|‖Tyn−1‖
≤ρψn ‖xn− xn−1‖+(1−ψn)‖yn− yn−1‖
+ |ψn−ψn−1|(‖ f (xn−1)‖+‖Tyn−1‖) .

(4.3)

By using (4.1), one also has
‖yn− yn−1‖ ≤νn ‖Swn−Swn−1‖+(1−νn)‖wn−wn−1‖

+ |νn−νn−1|(‖Swn−1‖+‖wn−1‖)
≤‖wn−wn−1‖+ |νn−νn−1|(‖Swn−1‖+‖wn−1‖) .

(4.4)

Combining (4.3) and (4.4), we find that
‖xn+1− xn‖

νn

≤(1− (1−ρ)ψn)
‖xn− xn−1‖

νn
+
|νn−νn−1|

νn
(‖Swn−1‖+‖wn−1‖)

+
|ψn−ψn−1|

νn
(‖ f (xn−1)‖+‖Tyn−1‖)+

δn

νn
‖xn− xn−1‖+

δn−1

νn
‖xn−1− xn−2‖

=(1− (1−ρ)ψn)
‖xn− xn−1‖

νn−1
+(1− (1−ρ)ψn)

(‖xn− xn−1‖
νn

− ‖xn− xn−1‖
νn−1

)
+
|νn−νn−1|

νn
(‖Swn−1‖+‖wn−1‖)+

|ψn−ψn−1|
νn

(‖ f (xn−1)‖+‖Tyn−1‖)

+
δn

νn
‖xn− xn−1‖+

δn−1

νn
‖xn−1− xn−2‖

≤(1− (1−ρ)ψn)
‖xn− xn−1‖

νn−1
+
(∣∣∣ 1

νn
− 1

νn−1

∣∣∣+ |νn−νn−1|
νn

+
|ψn−ψn−1|

νn

)
M1

+
δn

νn
‖xn− xn−1‖+

δn−1

νn
‖xn−1− xn−2‖

=(1− (1−ρ)ψn)
‖xn− xn−1‖

νn−1
+(1−ρ)ψn

( 1
ψn

∣∣∣∣ 1
νn
− 1

νn−1

∣∣∣∣
+

1
ψn

|νn−νn−1|
νn

+
1

ψn

|ψn−ψn−1|
νn

) M1

1−ρ

+(1−ρ)ψn

(
δn

(1−ρ)νnψn
‖xn− xn−1‖+

δn−1

(1−ρ)νnψn
‖xn−1− xn−2‖

)
,

(4.5)

where M1 satisfies

sup
n≥0
{‖xn− xn−1‖ ,(‖Swn−1‖+‖wn−1‖) ,(‖ f (xn−1)‖+‖Tyn−1‖)} ≤M1 .

From (C3), we observe that limn→∞
1

νn−1

∣∣νn−νn−1
ψnνn

∣∣= 0 implies

lim
n→∞

1
ψn

|νn−νn−1|
νn

= 0 . (4.6)
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Thus, from (C3) and (4.6), one obtains

lim
n→∞

( 1
ψn

∣∣∣∣ 1
νn
− 1

νn−1

∣∣∣∣+ 1
ψn

|νn−νn−1|
νn

+
1

ψn

|ψn−ψn−1|
νn

)
= 0 .

Hence, combining condition (C5), and applying Lemma 2.3 to (4.5), we immediately conclude
that limn→∞

‖xn+1−xn‖
νn

= 0, which leads us to

lim
n→∞
‖xn+1− xn‖= 0 . (4.7)

By (4.1), one has ‖xn+1−Tyn‖=ψn‖ f (xn)−Tyn‖→ 0 as n→∞, which together with (4.7) leads
to ‖xn−Tyn‖ ≤ ‖xn+1− xn‖+‖xn+1−Tyn‖ → 0 as n→ ∞. Using (4.1) again, one concludes
that ‖yn−wn‖= νn‖Swn−wn‖→ 0 as n→ ∞. By the definition of wn and condition (C5), one
has ‖wn− xn‖= δn‖xn− xn−1‖→ 0 as n→ ∞. Hence,

‖yn−Tyn‖ ≤ ‖yn−wn‖+‖wn− xn‖+‖xn−Tyn‖→ 0 , as n→ ∞ . (4.8)

Since the sequence {yn} is bounded, there exists a subsequence of {yn}, still denoted by {yn},
which converges weakly to some p ∈ H. Therefore, p ∈ Fix(T ) by (4.8) and the demiclosed
principle. From (4.1), we observe that

xn+1−wn = ψn ( f (xn)−wn)+(1−ψn)(Tyn− yn)+(1−ψn)νn (Swn−wn) ,

that is,
wn− xn+1

νn (1−ψn)
+

ψnδn(xn− xn−1)

νn (1−ψn)
=

ψn

νn (1−ψn)
(I− f )xn +

1
νn

(I−T )yn +(I−S)wn .

Lemma 2.1 assures that the operator sequence { 1
νn
(I− T )} graph converges to NFix(T ) and

{ ψn
νn(1−ψn)

(I− f )} graph converges to NC, which in the light of a result in [1] allows us to infer

that the operator (I−S)+ ψn
νn(1−ψn)

(I− f )+ 1
νn
(I−T ) graph converges to (I−S)+NC+NFix(T ).

This together with condition (C4) implies that (I − S) + ψn
νn(1−ψn)

(I − f ) + 1
νn
(I − T ) graph

converges to (I−S)+NFix(T ). Since wn−xn+1
νn(1−ψn)

+ ψnδn(xn−xn−1)
νn(1−ψn)

→ 0 and the graph (I−S)+NFix(T )

is weakly-strongly closed, we obtain 0 ∈ (I−S)p+NFix(T )p. That is, p solves the (HFPP). �

Remark 4.1. Prototypes for the iterative parameters are, for example, νn =
1
na , ψn =

1
nb and

ξn =
1
nc , where a ∈

(
0, 1

2

)
, b ∈ (a,1−a) and c ∈ (a+b,∞).

Theorem 4.2. Let C be a nonempty convex closed set in a real Hilbert space H. Let f : C→C be
a ρ-contraction mapping with ρ ∈ [0,1). Let S,T : C→C be two nonexpansive mappings. Let
{νn} and {ψn} be two sequences in (0,1). Suppose that the following conditions are satisfied:

(C1) limn→∞ ψn = 0 and ∑
∞
n=1 ψn = ∞;

(C2) limn→∞ νn = 0, limn→∞
ψn
νn

= 0 and limn→∞
ν2

n
ψn

= 0;

(C3) limn→∞
1

ψn

∣∣ 1
νn
− 1

νn−1

∣∣= 0 and limn→∞
1
νn

∣∣1− ψn−1
ψn

∣∣= 0;
(C4) Fix(T )∩ intC 6= /0;
(C5) limn→∞

δn‖xn−xn−1‖
νnψn

= 0;
(C6) There exists a constant k > 0 such that ‖x− T x‖ ≥ k Dist(x,Fix(T )) for each x ∈ C,

where Dist(x,Fix(T )) = infy∈Fix(T ) ‖x− y‖.
Then the sequence {xn} formed by (4.1) converges to p = PΩ f (p) in norm.
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Proof. Take p ∈ Fix(T ). From (4.1), we have

xn+1− p = ψn ( f (xn)− f (p))+ψn( f (p)− p)+(1−ψn)(Tyn− p) .

Thus,

‖xn+1− p‖2 ≤‖ψn ( f (xn)− f (p))+(1−ψn)(Tyn− p)‖2 +2ψn 〈 f (p)− p,xn+1− p〉

≤(1−ψn)‖Tyn− p‖2 +ψn ‖ f (xn)− f (p)‖2 +2ψn 〈 f (p)− p,xn+1− p〉

≤(1−ψn)‖yn− p‖2 +ρ
2
ψn ‖xn− p‖2 +2ψn 〈 f (p)− p,xn+1− p〉 .

(4.9)

Using (4.1), we obtain

‖yn− p‖2 = ‖(1−νn)(wn− p)+νn (Swn−Sp)+νn(Sp− p)‖2

≤ ‖(1−νn)(wn− p)+νn (Swn−Sp)‖2 +2νn 〈Sp− p,yn− p〉

≤ (1−νn)‖wn− p‖2 +νn ‖Swn−Sp‖2 +2νn 〈Sp− p,yn− p〉

≤ ‖wn− p‖2 +2νn 〈Sp− p,yn− p〉 .

(4.10)

Substituting (4.10) into (4.9), we have

‖xn+1− p‖2 ≤(1−ψn)‖wn− p‖2 +ρ
2
ψn ‖xn− p‖2

+2ψn 〈 f (p)− p,xn+1− p〉+2(1−ψn)νn 〈Sp− p,yn− p〉

≤
(
1−
(
1−ρ

2)
ψn
)
‖xn− p‖2 +2ψn 〈 f (p)− p,xn+1− p〉

+2(1−ψn)νn 〈Sp− p,yn− p〉+2δn〈xn− xn−1,wn− p〉 .

(4.11)

From condition (C5) and the fact that {wn} is bounded, one has

limsup
n→∞

2δn〈xn− xn−1,wn− p〉= 0 . (4.12)

By using Theorem 4.1, one observes that every weak cluster point of {xn} is in Ω. Therefore,
one easily infers from p = PΩ f (p) that

limsup
n→∞

〈 f (p)− p,xn− p〉 ≤ 0 . (4.13)

On the other hand, one observes that

〈Sp− p,yn− p〉=
〈
Sp− p,PFix(T ) yn− p

〉
+
〈
Sp− p,yn−PFix(T ) yn

〉
.

With the aid of PFix(T ) yn ∈ Fix(T ), one has
〈
Sp− p,PFix(T ) yn− p

〉
≤ 0. Hence

〈Sp− p,yn− p〉 ≤
〈
Sp− p,yn−PFix(T ) yn

〉
≤ ‖Sp− p‖‖yn−PFix(T ) yn‖

≤ 1
k
‖Sp− p‖‖yn−Tyn‖ .

From (4.1), we have

xn+1− xn

νn
=

ψn

νn
( f (xn)− xn)+

(1−ψn)

νn
(Tyn− xn) ,
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which together with limn→∞
‖xn+1−xn‖

νn
= 0 and limn→∞

ψn
νn

= 0 implies that limn→∞
‖Tyn−xn‖

νn
= 0 .

Hence,

lim
n→∞

νn ‖Tyn− xn‖
ψn

= lim
n→∞

‖Tyn− xn‖
νn

ν2
n

ψn
= 0 .

From yn−wn = νn (Swn−wn), one has

lim
n→∞

νn

ψn
‖yn−wn‖= lim

n→∞

ν2
n

ψn
‖Swn−wn‖= 0 .

Therefore,
νn

ψn
‖yn−Tyn‖ ≤

νn

ψn
(‖yn−wn‖+‖wn− xn‖+‖xn−Tyn‖)

=
νn

ψn
‖yn−wn‖+

νnδn‖xn− xn−1‖
ψn

+
νn

ψn
‖xn−Tyn‖→ 0 , as n→ ∞ .

This further yields that

limsup
n→∞

νn

ψn
〈Sp− p,yn− p〉 ≤ 0 . (4.14)

Finally, by (4.11), (4.12), (4.13), (4.14) and using Lemma 2.3, we conclude that {xn} converges
to p in norm. The proof is completed. �

Remark 4.2. (i) Prototypes for the iterative parameters are, for instance, νn =
1
na , ψn =

1
nb

and ξn =
1
nc , where a ∈

(
0, 1

3

)
, b ∈ (a,2a) and c ∈ (a+b,∞) or a ∈

(1
3 ,

1
2

)
, b ∈ (a,1−a)

and c ∈ (a+b,∞).
(ii) If δn = 0 in (4.1), then Algorithm ITWIA (4.1) becomes the Algorithm TWIA (1.3)

proposed by Yao, Liou and Marino [26].

5. NUMERICAL EXPERIMENTS

In this section, we provide several numerical experiments to demonstrate the computational
performance of the proposed algorithms IVIA (3.1), ITWIA (4.1), and compare them with
some existing algorithms, including Algorithm VIA (1.2) and Algorithm TWIA (1.3). All the
programs are performed in MATLAB2018a on a PC Desktop Intel(R) Core(TM) i5-8250U CPU
@ 1.60GHz 1.800 GHz, RAM 8.00 GB. MATLAB codes to reproduce the experiments are freely
available at https://github.com/bingtan72/Tan2020iManns4HFPPs.

Let C be a nonempty convex closed set in a real Hilbert space H. We consider the variational
inequality problem (in short, VIP):

find x∗ ∈C such that 〈A(x∗) ,x− x∗〉 ≥ 0, ∀x ∈C , (VIP)

where A : H→H is a mapping. Denote by VI(C,A) the solution set of (VIP). Define T : H→H
by T := PC and S : H → H by S := I− γA, where 0 < γ < 2/L (L is the Lipschitz constant of
mapping A). We see that Fix(PC(I− γA)) = VI(C,A). Therefore, variational inequality problem
(VIP) is a special case of hierarchical fixed point problem (HFPP).

Example 5.1. Take A : R2→ R2 as follows:

A(x,y) = (2x+2y+ sin(x),−2x+2y+ sin(y)), ∀x,y ∈ R .

https://github.com/bingtan72/Tan2020iManns4HFPPs
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Let C =
{

x ∈ R2 | −10e≤ x≤ 10e
}

, where e = (1,1)T. It is not hard to check that A is Lipschitz
continuous with constant L =

√
26 and 1-strongly monotone [8]. Therefore, (VIP) has a unique

solution x∗ = (0,0)T.
Our parameter are set as follows. In all algorithms, set νn = (n+1)−1/6, ψn = (n+1)−1/4,

f (x) = 0.5x and γ = 0.9/L. In Algorithm IVIA (3.1) and Algorithm ITWIA (4.1), we update
the inertial parameter δn through (3.6), where ξn = (n+1)−1/2 and δ = 0.5. Let x−1 = x0 be
randomly generated by the MATLAB function k×rand(m,1) (where Case I: k = 10, Case II:
k = 100, Case III: k = 1000, and Case IV: k = 10000). Denote by En = ‖xn− x∗‖2 the error of
the iterative algorithms and En < 10−8 the common stopping criterion. Our numerical results are
shown in Table 1 and Fig. 1.

TABLE 1. Compare the number of iterations for Example 5.1

Cases ITWIA (4.1) IVIA (3.1) TWIA (1.3) VIA (1.2)

I 28 28 42 42
II 33 34 46 47
III 36 39 49 51
IV 39 43 52 56
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(d) Case IV

FIGURE 1. Numerical behavior of {En} with different initial values for Example 5.1
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Further, we use the control variable method for Algorithm IVIA (3.1) and Algorithm ITWIA
(4.1) to analyze the variables νn, ψn, ξn, δ , f (x) and γ , respectively. Fig. 2(a), Fig. 2(b), Fig. 2(c),
Fig. 2(d), Fig. 3 and Fig. 4 show the effect of different νn, ψn, ξn, δ , f (x) and γ on the iteration
error En when other parameters remain the same as in Example 5.1.
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100
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35 40 45
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(b) Different ψn =
1

(n+1)b
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(c) Different ξn =
1

(n+1)c
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(d) Different δ in (3.6)

FIGURE 2. Numerical behavior of {En} with different parameters for Example 5.1

Example 5.2. We consider the linear operator A(x) = Mx+q, where q ∈ Rm and

M = NNT+U +D ,

where N is a m×m matrix, U is a m×m skew-symmetric matrix, and D is a m×m diagonal
matrix with its diagonal entries being nonnegative (hence M is positive symmetric definite).
The feasible set C is given by C = {x ∈ Rm :−5≤ xi ≤ 5, i = 1, . . . ,m}. It is clear that A is
Lipschitz monotone with constant L = ‖M‖. In the experiment, D is generated randomly in [1,5],
and all entries of N,U are generated randomly and uniformly in [−5,5]. Let q = 0. Then the
solution set is x∗ = {0}. Our parameter are set as follows. In all algorithms, set νn = (n+1)−1/6,
ψn = (n+1)−1/4, f (x) = 0.5x and γ = 0.9/L. In Algorithm IVIA (3.1) and Algorithm ITWIA
(4.1), we update the inertia parameter δn through (3.6), where ξn = (n+1)−1/2 and δ = 0.5. Let
x−1 = x0 be randomly generated by 104×rand(m,1). We test the convergence behavior under
different dimensions parameters m. Numerical results are reported in Table 2 and Fig. 5.
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FIGURE 3. Numerical behavior of {En} with different f (x) for Example 5.1
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FIGURE 4. Numerical behavior of {En} with different stepsize γ for Example 5.1

TABLE 2. Compare the number of iterations for Example 5.2

Dimensional ITWIA (4.1) IVIA (3.1) TWIA (1.3) VIA (1.2)

20 44 54 97 110
100 50 60 105 118
500 54 65 109 123

1000 56 67 112 126
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(a) Dimensional parameters m = 20
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(c) Dimensional parameters m = 500
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(d) Dimensional parameters m = 1000

FIGURE 5. Numerical behavior of {En} with different dimensions m for Example 5.2

Example 5.3. Suppose that H = L2([0,1]) with inner product 〈x,y〉 :=
∫ 1

0 x(t)y(t)dt, x,y ∈ H

and norm ‖x‖ :=
(∫ 1

0 |x(t)|2 dt
)1/2. Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball. Define an

operator A : C→ H by

A(x)(t) =
∫ 1

0
(x(t)−G(t,v)g(x(v)))dv+h(t) , t ∈ [0,1],x ∈C ,

where

G(t,v) =
2tvet+v

e
√

e2−1
, g(x) = cosx , h(t) =

2tet

e
√

e2−1
.

It is known that A is monotone and L-Lipschitz continuous with L = 2 and x∗ = {0} is the
solution of the corresponding variational inequality problem. Numerical results are given in
Table 3 and Fig. 6. In Table 3, “Iter.” and “Times(s)” denote the number of iterations and the cpu
time in seconds, respectively.

Remark 5.1. (1) We observe from numerical results of Examples 5.1–5.3 that our proposed
Algorithm IVIA (3.1) and Algorithm ITWIA (4.1) are efficient and very fast. In addition,
our algorithms converge faster than Algorithm VIA (1.2) and Algorithm TWIA (1.3) .

(2) Our proposed algorithms are strong robust, and initial values and scale of the dimension
does not affect the performance of our algorithms.
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TABLE 3. Compare different algorithms with different initial values for Example 5.3

Cases Initial values
ITWIA (4.1) IVIA (3.1) TWIA (1.3) VIA (1.2)

Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)

I
x−1 = 10cos(3πt)
x0 = 10sin(3πt)

10 3.7971 10 3.7056 20 6.6083 21 7.6692

II
x−1 = 10 t2

x0 = 50et 16 5.7189 17 6.3725 23 8.9447 25 10.1334

III
x−1 = 100 t2

x0 = 100et + t4/24
16 5.5771 18 5.9763 24 8.3232 26 9.3359

IV
x−1 = 1000et

x0 = 1000et + t4/24
18 6.2018 21 6.8170 26 8.9705 29 10.3813
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FIGURE 6. Numerical behavior of {En} with different initial points for Example 5.3

(3) It should be noted that our initial values selection are very large (see Fig. 1, Fig. 5
and Fig. 6), and our dimensions are also chosen very large (see Table 2). Even so, our
algorithms can still achieve accuracy requirements with a small number of iterations.

(4) As show in Fig. 6, in a real Hilbert space, our algorithms converge very quickly and are
independent of the initial values.
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6. THE CONCLUSION

In this paper, we investigated the hierarchical fixed point problems. We modified the Algorithm
VIA (1.2) and the Algorithm TWIA (1.3) with the aid of the inertial idea. Strong convergence
was established under some mild assumptions in real Hilbert spaces. Numerical experiments
show that our algorithms, which improve and generalize some of the existing algorithms, are
very efficient and robust.
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