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Abstract
In this paper, we study the strong convergence of two Mann-type inertial extragradient algo-
rithms, which are devised with a new step size, for solving a variational inequality problem
with a monotone and Lipschitz continuous operator in real Hilbert spaces. Strong conver-
gence theorems for the suggested algorithms are proved without the prior knowledge of
the Lipschitz constant of the operator. Finally, we provide some numerical experiments to
illustrate the performance of the proposed algorithms and provide a comparison with related
ones.

Keywords Variational inequality problem · Subgradient extragradient algorithm · Tseng’s
extragradient algorithm · Inertial method · Mann-type method

Mathematics Subject Classification 47H05 · 47H09 · 47J20 · 47J25 · 65K10 · 65K15

1 Introduction

Let C be a convex and closed set in a real Hilbert spaces H with the inner product 〈·, ·〉
and the norm ‖ · ‖. For all x, y ∈ H , one recalls that a mapping T : H → H is said
to be (i) L-Lipschitz continuous with L > 0 iff ‖T x − T y‖ ≤ L‖x − y‖ (if L = 1, then
T is said to be nonexpansive); (ii) η-strongly monotone if there exists η > 0 such that
〈T x − T y, x − y〉 ≥ η‖x − y‖; (iii) monotone if 〈T x − T y, x − y〉 ≥ 0. A point x∗ ∈ H
is called a fixed point of T if T x∗ = x∗. The set of all the fixed points of T is denoted by
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Fix(T ). Let A : H → H be an operator. The variational inequality problem (shortly, VIP)
for A on C is to find a point x∗ ∈ C such that

〈
Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C . (VIP)

From now on, the solution set of (VIP) is denoted by VI(C, A).
In a wide range of applied mathematics problems, the existence of a solution is equivalent

to the solution of the above-mentioned classical variational inequality. Therefore, variational
inequalities are important tools for studying various physics, engineering, economics and
optimization theories, see, e.g., (Wang et al. 2019; Sahu et al. 2020; Qin and An 2019; An
et al. 2020). Over the last 60 years or so, the variational inequality has been revealed as a
very powerful and important tool in the study of various linear and nonlinear phenomena.
Some problems, such as systems of equations, complementarity problems, and equilibrium
problems, can be formulated as variational inequalities.

Recently, many authors proposed and investigated various algorithms for solving the
variational inequality problem, see, e.g., (Cho and Kang 2012; Cho et al. 2013; Shehu et al.
2019; Liu et al. 2019; Fan et al. 2020; Ansari et al. 2020; Wang and Pham 2019) and the
references therein. Projection-based methods and their variant forms act as important tools
for finding approximate solutions of the variational inequality. A well-known method to
solve (VIP) is the projected gradient method: xn+1 = PC (xn − λAxn) , ∀n ≥ 1, where λ

is a positive real number and PC is the metric (nearest point) projection onto C . However,
the convergence of the algorithm requires strong monotonicity of A (or inverse strongly,
which is also usually said to be co-coercive). If mapping A is L-Lipschitz continuous and
monotone, Korpelevich (1976) proposed the following extragradient method (EGM) with
double projections to reduce the strong hypotheses of operator A:

{
yn = PC (xn − λAxn) ,

xn+1 = PC (xn − λAyn) , ∀n ≥ 1 ,

where λ ∈ (0, 1/L). The algorithm converges to an element of VI(C, A) provided that
VI(C, A) is non-empty. The disadvantage of the EGM is that it needs to calculate two
projections from H onto the feasibility set C in each iteration. If C is a general convex-
closed set, this might require a prohibitive amount of computation time. To overcome this
computational drawback,many authors havemodified thismethod in variousways. Recently,
there are twomodified extragradient algorithms in the literature to overcome this shortcoming.
These two methods are the Tseng’s extragradient algorithm (TEGM) suggested by Tseng
(2000) and the subgradient extragradient algorithm (SEGM)proposed byCensor et al. (2011).
We point out here that the Tseng’s extragradient algorithm and the subgradient extragradient
algorithm only need to calculate one projection onto C in each iteration. Note that under
some appropriate settings, the TEGM and the SEGM weakly converge to the solution of the
variational inequality. Some examples in machine learning and image processing tell us that
strong convergence is preferable to weak convergence in an infinite-dimensional space. For
this reason, a natural question is how to design an algorithm that provides strong convergence
to solve the (VIP) when mapping A is only L-Lipschitz continuous and monotone. Recently,
Kraikaew and Saejung (2014) based on the subgradient extragradient algorithm and the
Halpern method to proposed an algorithm for solving monotone (VIP). Their algorithm is of
the form:
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⎧
⎪⎨

⎪⎩

yn = PC (xn − λAxn) ,

Tn = {x ∈ H | 〈xn − λAxn − yn, x − yn〉 ≤ 0} ,

xn+1 = αnx0 + (1 − αn) PTn (xn − λAyn) , ∀n ≥ 1 ,

(HSEGM)

where λ ∈ (0, 1/L), αn ⊂ (0, 1) with
∑∞

n=1 αn = +∞ and limn→∞ αn = 0. They proved
that the sequence {xn} generated by (HSEGM) converges to the solution of (VIP) in norm.
Note that the algorithm (HSEGM) needs to know the Lipschitz constant of the mapping A,
which limits the applicability of the algorithm. To overcome this shortcoming, Shehu and
Iyiola (2017) proposed a modification of the subgradient extragradient algorithm with the
adoption of the Armijo-like step size rule. Indeed, they investigated the following algorithm:

⎧
⎪⎨

⎪⎩

yn = PC (xn − λn Axn) ,

Tn = {x ∈ H | 〈xn − λn Axn − yn, x − yn〉 ≤ 0} ,

xn+1 = αn f (xn) + (1 − αn)PTn (xn − λn Ayn) , ∀n ≥ 1 ,

(VSEGM)

where f : H → H is a contraction mapping, λn = �mn andmn is the smallest non-negative
integer such that λn ‖Axn − Ayn‖ ≤ μ ‖xn − yn‖ (� ∈ (0, 1), μ ∈ (0, 1)). They showed
that the iterative process defined by (VSEGM) converges to the solution set of (VIP) in
norm. The algorithm does not need to know the Lipschitz constant of the mapping A, but
calculating the step size requires to evaluate the value of A multiple times in each iteration.
Therefore, although the Armijo-like criterion may not need to know the Lipschitz constant,
it is very computationally expensive. Recently, Yang and Liu (2019) combined the Tseng’s
extragradient algorithm and the viscosity method with a simple step size and proposed a new
iterative algorithm. The algorithm consists of only one projection and does not require the
prior knowledge of the Lipschitz constant of the operator. They obtained a strong convergence
theorem under suitable conditions, and their algorithm is described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Take λ0 ∈ (0, 1), μ ∈ (0, 1) ,

yn = PC (xn − λn Axn) ,

xn+1 = αn f (xn) + (1 − αn)[yn − λn(Ayn − Axn)] ,

λn+1 =
{
min

{
μ‖xn−yn‖

‖Axn−Ayn‖ , λn

}
, if Axn − Ayn = 0 ;

λn, otherwise .

(TVEGM)

On the other hand, in recent years, there has been tremendous interest in developing fast
iterative algorithms. Many authors have used inertial methods to devise a large number of
iterative algorithms that can improve the convergence speed; see, for example, (Liu 2019;
Qin et al. 2020; Tan et al. 2020; Tan and Li 2020; Tan and Xu 2020; Zhou et al. 2020) and the
references therein. These inertial-type algorithms have better numerical performance than
algorithms without inertial terms.

Motivated and inspired by the above works, in this paper, we introduce two self-adaptive
inertial Mann-type extragradient algorithms to solve the monotone variational inequality
problem in real Hilbert spaces. Our algorithms can work well without knowing the prior
knowledge of the Lipschitz constant of the mapping. Under some mild conditions, we prove
that the iterative sequence generated by the suggested algorithms converges to a solution of
(VIP) in norm. Some numerical experiments are provided to support the theoretical results.
Our numerical results show that the new algorithms have a faster convergence speed than the
existing ones.
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The remainder of this paper is organized as follows. InSect. 2, one recalls somepreliminary
results and lemmas for further use. Section 3 analyzes the convergence of the proposed
algorithms. In Sect. 4, some numerical examples are presented to illustrate the numerical
behavior of the proposed algorithms and compare them with some existing ones. Finally, a
brief summary is given in Sect. 5, the last section.

2 Preliminaries

LetC be a convex closed subset of a real Hilbert spaceH . The weak convergence, which the
convergence in the weak topology, and strong convergence (convergence in norm) of {xn}∞n=1
to x are represented by xn⇀x and xn → x , respectively. For each x, y, z ∈ H , we have

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, α ∈ R;
(3) ‖αx+β y+γ z‖2 = α‖x‖2+β‖y‖2+γ ‖z‖2−αβ‖x− y‖2−αγ ‖x−z‖2−βγ ‖y−z‖2,

where α, β, γ ∈ [0, 1] with α + β + γ = 1.

For every point x ∈ H , there exists a unique nearest point in C , denoted by PC (x) such
that PC (x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric projection of H onto C . It
is known that PC is nonexpansive and PC (x) has the following basic properties:

• 〈x − PC (x), y − PC (x)〉 ≤ 0, ∀y ∈ C ;
• ‖PC (x) − PC (y)‖2 ≤ 〈PC (x) − PC (y), x − y〉 , ∀y ∈ H .

To prove the convergence of the proposed algorithms, we need the following lemmas.

Lemma 2.1 (Kraikaew and Saejung 2014) Let A : H → H be a monotone and L-Lipschitz
continuous mapping on C. Let S = PC (I − μA), where μ > 0. If {xn} is a sequence in H
satisfying xn⇀q and xn − Sxn → 0, then q ∈ VI(C, A) = Fix(S).

Lemma 2.2 (Maingé 2008) Assume that {an} is a nonnegative real number sequence and
there is a subsequence {an j } of {an} such that an j < an j+1 for all j ∈ N. Then, there exists a
nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following properties
are satisfied by all (sufficiently large) number k ∈ N :

amk ≤ amk+1 and ak ≤ amk+1 .

In fact, mk is the largest number n in the set {1, 2, . . . , k} such that an < an+1.

Lemma 2.3 (Liu 1995; Xu 2002) Let {an} be a non-negative real number sequence, which
satisfies

an+1 ≤ αnbn + (1 − αn) an, ∀n > 0 ,

where {αn} ⊂ (0, 1) and {bn} are two sequences such that
∑∞

n=0 αn = ∞ and
lim supn→∞ bn ≤ 0. Then, limn→∞ an = 0.

3 Main results

In this section, we introduce two new inertial extragradient algorithms with a new step size
for solving variational inequality problems and analyze their convergence. First, we assume
that our proposed algorithms satisfy the following conditions.
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(C1) The mapping A : H → H is monotone and L-Lipschitz continuous on H .
(C2) The solution set of the (VIP) is nonempty, that is, VI(C, A) = ∅.
(C3) Let {εn} be a positive sequence such that limn→∞ εn

αn
= 0, where {αn} ⊂ (0, 1) is

with the restrictions that
∑∞

n=1 αn = ∞ and limn→∞ αn = 0. Let {βn} ⊂ (a, b) ⊂
(0, 1 − αn) for some a > 0, b > 0.

3.1 TheMann-type inertial subgradient extragradient algorithm

Now, we introduce a Mann-type inertial subgradient extragradient algorithm for solving
variational inequality problems. The Algorithm 3.1 is read as follows.

Algorithm 3.1 The Mann-type inertial subgradient extragradient algorithm for (VIP)
Initialization: Take θ > 0, λ1 > 0, μ ∈ (0, 1). Let x0, x1 ∈ H be arbitrarily fixed.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set

wn = xn + θn
(
xn − xn−1

)
,

where

θn =
⎧
⎨

⎩
min

{
εn∥∥xn − xn−1

∥∥ , θ

}
, if xn = xn−1 ;

θ, otherwise .

(3.1)

Step 2. Compute
yn = PC (wn − λn Awn) .

If wn = yn , then stop, and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute

zn = PTn (wn − λn Ayn) ,

where Tn := {x ∈ H | 〈wn − λn Awn − yn , x − yn〉 ≤ 0}.
Step 4. Compute

xn+1 = (1 − αn − βn) wn + βnzn ,

and update

λn+1 =
⎧
⎨

⎩
min

{
μ ‖wn − yn‖
‖Awn − Ayn‖ , λn

}
, if Awn − Ayn = 0 ;

λn , otherwise .

(3.2)

Set n := n + 1 and go to Step 1.

Remark 3.1 It follows from (3.1) that

lim
n→∞

θn

αn
‖xn − xn−1‖ = 0 .

Indeed, we have θn ‖xn − xn−1‖ ≤ εn for all n, which together with limn→∞ εn
αn

= 0 implies
that

lim
n→∞

θn

αn
‖xn − xn−1‖ ≤ lim

n→∞
εn

αn
= 0 .

The following lemmas are quite helpful to analyze the convergence of the algorithm.
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Lemma 3.1 The sequence {λn} generated by (3.2) is a nonincreasing sequence and

lim
n→∞ λn = λ ≥ min

{
λ1,

μ

L

}
.

Proof It follows from (3.2) that λn+1 ≤ λn for all n ∈ N. Hence, {λn} is nonincreasing. On
the other hand, we get ‖Awn − Ayn‖ ≤ L ‖wn − yn‖ since A is L-Lipschitz continuous.
Consequently,

μ
‖wn − yn‖

‖Awn − Ayn‖ ≥ μ

L
, if Awn = Ayn ,

which together with (3.2) implies that λn ≥ min{λ1, μ
L }. Since {λn} is nonincreasing and

lower bounded, we have limn→∞ λn = λ ≥ min
{
λ1,

μ
L

}
. ��

Lemma 3.2 Assume that the conditions (C1) and (C2) hold. Let {zn} be a sequence generated
by Algorithm 3.1. Then, for all p ∈ VI(C, A),

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ

λn

λn+1

)
‖yn − wn‖2 −

(
1 − μ

λn

λn+1

)
‖zn − yn‖2 .

Proof By the definition of λn , one has

‖Awn − Ayn‖ ≤ μ

λn+1
‖wn − yn‖ , ∀n ≥ 0 .

Using p ∈ VI(C, A) ⊂ C ⊂ Tn , we have

2 ‖zn − p‖2 = 2
∥∥PTn (wn − λn Ayn) − PTn (p)

∥∥2 ≤ 2 〈zn − p, wn − λn Ayn − p〉
= ‖zn − p‖2 + ‖wn − λn Ayn − p‖2 − ‖zn − wn + λn Ayn‖2
= ‖zn − p‖2 + ‖wn − p‖2 + λ2n ‖Ayn‖2 − 2 〈wn − p, λn Ayn〉

− ‖zn − wn‖2 − λ2n ‖Ayn‖2 − 2 〈zn − wn, λn Ayn〉
= ‖zn − p‖2 + ‖wn − p‖2 − ‖zn − wn‖2 − 2 〈zn − p, λn Ayn〉 ,

which implies that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2 〈zn − p, λn Ayn〉 . (3.3)

We have 〈Ap, yn − p〉 ≥ 0 since p ∈ VI(C, A). In addition, since A is monotone, we have
2λn 〈Ayn − Ap, yn − p〉 ≥ 0. Thus, adding this item to the right side of (3.3), we get

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2 〈zn − p, λn Ayn〉 + 2λn 〈Ayn − Ap, yn − p〉
= ‖wn − p‖2 − ‖zn − wn‖2 + 2 〈yn − zn, λn Ayn〉 − 2λn 〈Ap, yn − p〉
≤ ‖wn − p‖2 − ‖zn − wn‖2 + 2λn 〈yn − zn, Ayn − Awn〉

+ 2λn 〈Awn, yn − zn〉 . (3.4)

Note that

2λn 〈yn − zn, Ayn−Awn〉 ≤2λn ‖Ayn−Awn‖ ‖yn − zn‖≤2μ
λn

λn+1
‖wn − yn‖ ‖yn − zn‖

≤ μ
λn

λn+1
‖wn − yn‖2 + μ

λn

λn+1
‖yn − zn‖2 . (3.5)
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Next, we estimate 2λn 〈Awn, yn − zn〉. Since zn = PTn (wn − λn Ayn) and hence zn ∈ Tn ,
we have

〈wn − λn Awn − yn, zn − yn〉 ≤ 0 ,

which implies that

2λn 〈Awn, yn − zn〉 ≤ 2 〈yn − wn, zn − yn〉
= ‖zn − wn‖2 − ‖yn − wn‖2 − ‖zn − yn‖2 . (3.6)

Substituting (3.5) and (3.6) into (3.4), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ

λn

λn+1

)
‖yn − wn‖2 −

(
1 − μ

λn

λn+1

)
‖zn − yn‖2 .

This completes the proof. ��
Theorem 3.1 Assume that Conditions (C1)–(C3) hold. Then the sequence {xn} generated by
Algorithm 3.1 converges to p ∈ VI(C, A) in norm, where ‖p‖ = min{‖z‖ : z ∈ VI(C, A)}.
Proof According to Lemma 3.1, it follows that limn→∞

(
1 − μ λn

λn+1

) = 1 − μ > 0. Thus,
there exists n0 ∈ N such that

1 − μ
λn

λn+1
> 0, ∀n ≥ n0 . (3.7)

Combining Lemma 3.2 and (3.7), we obtain

‖zn − p‖ ≤ ‖wn − p‖ , ∀n ≥ n0 . (3.8)

Claim 1. The sequence {xn} is bounded. By the definition of xn+1, one has

‖xn+1 − p‖ = ‖(1 − αn − βn) wn + βnzn − p‖
= ‖(1 − αn − βn) (wn − p) + βn (zn − p) − αn p‖
≤ ‖(1 − αn − βn) (wn − p) + βn (zn − p)‖ + αn‖p‖. (3.9)

On the other hand, it follows from (3.8) that

‖(1 − αn − βn) (wn − p) + βn (zn − p)‖2
= (1 − αn − βn)

2 ‖wn − p‖2 + 2 (1 − αn − βn) βn 〈wn − p, zn − p〉 + β2
n ‖zn − p‖2

≤ (1 − αn − βn)
2 ‖wn − p‖2 + 2 (1 − αn − βn) βn ‖zn − p‖ ‖wn − p‖ + β2

n ‖zn − p‖2
≤ (1 − αn − βn)

2 ‖wn − p‖2 + 2 (1 − αn − βn) βn ‖wn − p‖2 + β2
n ‖wn − p‖2

= (1 − αn)
2 ‖wn − p‖2 , ∀n ≥ n0,

which yields

‖(1 − αn − βn) (wn − p) + βn (zn − p)‖ ≤ (1 − αn) ‖wn − p‖ , ∀n ≥ n0 . (3.10)

Using the definition of wn , we can write

‖wn − p‖ ≤ ‖xn − p‖ + αn · θn

αn
‖xn − xn−1‖ . (3.11)

By Remark 3.1, we have θn
αn

‖xn − xn−1‖ → 0. Thus, there exists a constant M1 > 0 such
that

θn

αn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1 . (3.12)
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From (3.8), (3.11) and (3.12), we find that

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ + αnM1, ∀n ≥ n0 . (3.13)

Combining (3.9), (3.10) and (3.13), we deduce that

‖xn+1 − p‖ ≤ (1 − αn) ‖wn − p‖ + αn‖p‖
≤ (1 − αn) ‖xn − p‖ + αn(‖p‖ + M1)

≤ max {‖xn − p‖ , ‖p‖ + M1}
≤ · · · ≤ max

{∥∥xn0 − p
∥∥ , ‖p‖ + M1

}
.

That is, the sequence {xn} is bounded. So the sequences {wn} and {zn} are also bounded.

Claim 2.

βn

(
1 − μ

λn

λn+1

)
‖wn − yn‖2 + βn

(
1 − μ

λn

λn+1

)
‖yn − zn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(‖p‖2 + M2)

for some M2 > 0. Indeed, by the definition of xn+1, one obtains

‖xn+1 − p‖2 =‖(1−αn−βn) wn+βnzn− p‖2
=‖(1 − αn − βn) (wn − p) + βn (zn − p) + αn(−p)‖2
= (1 − αn − βn) ‖wn − p‖2 + βn ‖zn − p‖2 + αn‖p‖2

− βn (1 − αn − βn) ‖wn − zn‖2 − αn (1 − αn − βn) ‖wn‖2 − αnβn ‖zn‖2
≤ (1 − αn − βn) ‖wn − p‖2 + βn ‖zn − p‖2 + αn‖p‖2 .

(3.14)
In view of (3.13), one sees that

‖wn − p‖2 ≤ (‖xn − p‖ + αnM1)
2

= ‖xn − p‖2 + αn
(
2M1 ‖xn − p‖ + αnM

2
1

)

≤ ‖xn − p‖2 + αnM2 (3.15)

for some M2 > 0. Thus, using Lemma 3.2, (3.14) and (3.15), we obtain

‖xn+1 − p‖2 ≤ (1 − αn − βn) ‖wn − p‖2 + βn ‖wn − p‖2 − βn

(
1 − μ

λn

λn+1

)
‖wn − yn‖2

− βn

(
1 − μ

λn

λn+1

)
‖yn − zn‖2 + αn‖p‖2

≤ ‖xn − p‖2 − βn

(
1 − μ

λn

λn+1

)
‖wn − yn‖2

− βn

(
1 − μ

λn

λn+1

)
‖yn − zn‖2 + αn(‖p‖2 + M2) .

Claim 3.

‖xn+1 − p‖2 ≤ (1 − αn) ‖xn − p‖2 + αn

[
2βn ‖wn − zn‖ ‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
, ∀n ≥ n0
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for some M > 0. Indeed, by the definition of wn , one obtains

‖wn − p‖2 = ‖xn + θn (xn − xn−1) − p‖2
= ‖xn − p‖2 + 2θn 〈xn − p, xn − xn−1〉 + θ2n ‖xn − xn−1‖2
≤ ‖xn − p‖2 + 3Mθn ‖xn − xn−1‖ , (3.16)

where M := supn∈N {‖xn − p‖ , θ ‖xn − xn−1‖} > 0. Setting tn = (1 − βn) wn +βnzn , one
has

‖tn − wn‖ = βn ‖wn − zn‖ . (3.17)

It follows from (3.13) that

‖tn − p‖ = ‖(1 − βn) (wn − p) + βn (zn − p)‖
≤ (1 − βn) ‖wn − p‖ + βn ‖wn − p‖
= ‖wn − p‖ , ∀n ≥ n0. (3.18)

From (3.16), (3.17) and (3.18), for all n ≥ n0, we get

‖xn+1 − p‖2 =‖(1 − βn)wn + βnzn − αnwn − p‖2
=‖(1 − αn) (tn − p) − αn (wn − tn) − αn p‖2
≤ (1 − αn)

2 ‖tn − p‖2 − 2αn 〈wn − tn + p, xn+1 − p〉
= (1 − αn)

2 ‖tn − p‖2 + 2αn 〈wn − tn, p − xn+1〉 + 2αn 〈p, p − xn+1〉
≤ (1 − αn) ‖tn − p‖2 + 2αn ‖wn − tn‖ ‖xn+1 − p‖ + 2αn 〈p, p − xn+1〉
≤ (1 − αn) ‖xn − p‖2 + αn

[
2βn ‖wn − zn‖ ‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
.

Claim 4. The sequence {‖xn − p‖2} converges to zero by considering two possible cases on
the sequence {‖xn − p‖2}.
Case 1. There exists an N ∈ N, such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N . This
implies that limn→∞ ‖xn − p‖2 exists. In view of limn→∞

(
1 − μ λn

λn+1

) = 1 − μ > 0 and
Condition (C3). It implies from Claim 2 that

lim
n→∞ ‖wn − yn‖ = 0 and lim

n→∞ ‖yn − zn‖ = 0 .

This implies that limn→∞ ‖zn − wn‖ = 0, which together with the boundedness of {xn}
gives that

lim
n→∞ βn ‖wn − zn‖ ‖xn+1 − p‖ = 0 .

According to the definition of wn , one has

‖xn − wn‖ = θn ‖xn − xn−1‖ = αn · θn

αn
‖xn − xn−1‖ → 0 as n → ∞ .

On the other hand, one sees that

‖xn+1 − wn‖ ≤ αn ‖wn‖ + βn ‖zn − wn‖ → 0 as n → ∞ .

This together with limn→∞ ‖xn − wn‖ = 0 implies that

lim
n→∞ ‖xn+1 − xn‖ = 0 .
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Since {xn} is bounded, there exists a subsequence {xn j } of {xn}, such that xn j ⇀q and

lim sup
n→∞

〈p, p − xn〉 = lim
j→∞

〈
p, p − xn j

〉 = 〈p, p − q〉 .

We get wn j ⇀q since ‖xn − wn‖ → 0, this together with limn→∞ λn = λ > 0 and
‖wn − yn‖ → 0, in the light of Lemma 2.1, yields that q ∈ VI(C, A). Since q ∈ VI(C, A)

and ‖p‖ = min{‖z‖ : z ∈ VI(C, A)}, that is p = PVI(C,A)0, we deduce that

lim sup
n→∞

〈p, p − xn〉 = 〈p, p − q〉 ≤ 0 .

From ‖xn+1 − xn‖ → 0, we get

lim sup
n→∞

〈p, p − xn+1〉 ≤ 0 .

Therefore, using Claim 3 and Remark 3.1 in Lemma 2.3, we conclude that xn → p.
Case 2. There exists a subsequence {‖xn j − p‖2} of {‖xn − p‖2} such that ‖xn j − p‖2 <

‖xn j+1 − p‖2 for all j ∈ N. In this case, it follows from Lemma 2.2 that there exists a
nondecreasing sequence {mk} ofN such that limk→∞ mk = ∞ and the following inequalities
hold for all k ∈ N :

∥∥xmk − p
∥∥2 ≤ ‖xmk+1 − p‖2 and ‖xk − p‖2 ≤ ‖xmk+1 − p‖2 .

By Claim 2, we have

βmk

(
1 − μ

λmk

λmk+1

) ∥∥wmk − ymk

∥∥2 + βmk

(
1 − μ

λmk

λmk+1

) ∥∥ymk − zmk

∥∥2

≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + αmk (‖p‖2 + M2)

≤ αmk (‖p‖2 + M2) .

Therefore, from Condition (C3), we get

lim
k→∞

∥∥wmk − ymk

∥∥ = 0 and lim
k→∞

∥∥ymk − zmk

∥∥ = 0 .

As proved in the first case, we get ‖xmk+1 − xmk‖ → 0 and lim supk→∞〈p, p− xmk+1〉 ≤ 0.
From Claim 3 and ‖xmk − p‖2 ≤ ‖xmk+1 − p‖2, we obtain

‖xmk+1 − p‖2 ≤ (
1 − αmk

) ‖xmk+1 − p‖2 + αmk

[
2βmk

∥∥wmk − zmk

∥∥ ‖xmk+1 − p‖

+ 2〈p, p − xmk+1〉 + 3Mθmk

αmk

‖xmk − xmk−1‖
]
.

This implies that

‖xk − p‖2≤2βmk

∥∥wmk −zmk

∥∥ ‖xmk+1 − p‖+2
〈
p, p−xmk+1

〉+ 3Mθmk

αmk

‖xmk −xmk−1‖ .

Therefore, we obtain lim supk→∞ ‖xk − p‖ ≤ 0, that is, xk → p. The proof is completed. ��

3.2 TheMann-type inertial Tseng’s extragradient algorithm

In this subsection, we introduce a Mann-type inertial Tseng’s extragradient algorithm for
solving variational inequality problems. Our Algorithm 3.2 is as follows.

The following lemma is very helpful for analyzing the convergence of the Algorithm 3.2.
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Algorithm 3.2 The Mann-type inertial Tseng’s extragradient algorithm for (VIP)
Initialization: Take θ > 0, λ1 > 0, μ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary fixed.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set

wn = xn + θn
(
xn − xn−1

)
,

where

θn =
⎧
⎨

⎩
min

{
εn∥∥xn − xn−1

∥∥ , θ

}
, if xn = xn−1 ;

θ, otherwise .

Step 2. Compute

yn = PC (wn − λn Awn) .

If wn = yn , then stop, and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute

zn = yn − λn (Ayn − Awn) ,

Step 4. Compute

xn+1 = (1 − αn − βn) wn + βnzn ,

and update

λn+1 =
⎧
⎨

⎩
min

{
μ ‖wn − yn‖
‖Awn − Ayn‖ , λn

}
, if Awn − Ayn = 0 ;

λn , otherwise .

Set n := n + 1 and go to Step 1.

Lemma 3.3 Assume that Conditions (C1) and (C2) hold. Let {zn} be a sequence created by
Algorithm 3.2. Then,

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 , ∀p ∈ VI(C, A) ,

and

‖zn − yn‖ ≤ μ
λn

λn+1
‖wn − yn‖ .

Proof First, using the definition of λn , it is easy to see that

‖Awn − Ayn‖ ≤ μ

λn+1
‖wn − yn‖ , ∀n ≥ 0 . (3.19)

By the definition of zn , one sees that

‖zn − p‖2 = ‖yn − λn (Ayn − Awn) − p‖2
= ‖wn − p‖2 + ‖yn − wn‖2 + 2 〈yn − wn, wn − p〉

+λ2n ‖Ayn − Awn‖2 − 2λn 〈yn − p, Ayn − Awn〉
= ‖wn − p‖2 + ‖yn − wn‖2 − 2 〈yn − wn, yn − wn〉 + 2 〈yn − wn, yn − p〉

+λ2n ‖Ayn − Awn‖2 − 2λn 〈yn − p, Ayn − Awn〉
= ‖wn − p‖2 − ‖yn − wn‖2 + 2 〈yn − wn, yn − p〉

+λ2n ‖Ayn − Awn‖2 − 2λn 〈yn − p, Ayn − Awn〉 . (3.20)
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Since yn = PC (wn − λn Awn), using the property of projection, we obtain

〈yn − wn + λn Awn, yn − p〉 ≤ 0 ,

or equivalently
〈yn − wn, yn − p〉 ≤ −λn 〈Awn, yn − p〉 . (3.21)

From (3.19), (3.20) and (3.21), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖yn − wn‖2 − 2λn 〈Awn, yn − p〉 + μ2 λ2n

λ2n+1

‖wn − yn‖2

− 2λn 〈yn − p, Ayn − Awn〉

= ‖wn − p‖2 −
(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 − 2λn 〈yn − p, Ayn − Ap〉

− 2λn 〈yn − p, Ap〉 .

(3.22)
Using p ∈ VI(C, A) and the monotonicity of A, we get

〈Ap, yn − p〉 ≥ 0 and 〈Ayn − Ap, yn − p〉 ≥ 0 . (3.23)

Combining (3.22) and (3.23), we deduce that

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 .

From the definition of zn and (3.19), we obtain

‖zn − yn‖ ≤ μ
λn

λn+1
‖wn − yn‖ .

This completes the proof of the lemma. ��
Theorem 3.2 Assume that Conditions (C1)–(C3) hold. Then the sequence {xn} formed by
Algorithm 3.2 converges to p ∈ VI(C, A) in norm, where ‖p‖ = min{‖z‖ : z ∈ VI(C, A)}.

Proof Since limn→∞
(
1 − μ2 λ2n

λ2n+1

) = 1 − μ2 > 0, there exists n0 ∈ N such that

1 − μ2 λ2n

λ2n+1

> 0, ∀n ≥ n0 . (3.24)

Combining Lemma 3.3 and (3.24), we get

‖zn − p‖ ≤ ‖wn − p‖ , ∀n ≥ n0 . (3.25)

Claim 1. The sequence {xn} is bounded. Using the same arguments with the Claim 1 in the
Theorem 3.1, we get that {xn} is bounded. Consequently, the sequences {wn} and {zn} are
also bounded.

Claim 2.

βn

(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 + βn (1 − αn − βn) ‖wn − zn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(‖p‖2 + M2) .
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Indeed, by the definition of xn+1, we have

‖xn+1 − p‖2 = ‖(1 − αn − βn)wn + βnzn − p‖2
≤ (1 − αn − βn) ‖wn − p‖2 + βn ‖zn − p‖2 + αn‖p‖2

−βn (1 − αn − βn) ‖wn − zn‖2 . (3.26)

Combining (3.15), Lemma 3.3 and (3.26), we obtain

‖xn+1 − p‖2 ≤ (1 − αn − βn) ‖wn − p‖2 + βn ‖wn − p‖2

− βn

(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2

+ αn‖p‖2 − βn (1 − αn − βn) ‖wn − zn‖2

≤ ‖xn − p‖2 − βn

(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 + αn(‖p‖2 + M2)

− βn (1 − αn − βn) ‖wn − zn‖2 .

The desired result can be obtained by a simple deformation.

Claim 3.

‖xn+1 − p‖2 ≤ (1 − αn) ‖xn − p‖2 + αn

[
2βn ‖wn − zn‖ ‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
, ∀n ≥ n0 .

The desired result can be obtained using the same arguments as in the Theorem3.1 of Claim 3.

Claim 4. The sequence {‖xn − p‖2} converges to zero, that is, xn → p. The proof is similar
to the Claim 4 of Theorem 3.1, we leave it for the reader to verify. ��

4 Numerical examples

In this section, we provide some numerical examples to show the numerical behavior of
our proposed algorithms, namely Algorithm 3.1 (shortly, MiSEGM) and Algorithm 3.2
(MiTEGM), and also to compare them with some existing ones, including the Halpern
subgradient extragradient algorithm (HSEGM) (Kraikaew and Saejung 2014), the viscos-
ity subgradient extragradient algorithm (VSEGM) (Shehu and Iyiola 2017), the Tseng’s
viscosity extragradient algorithm (TVEGM) (Yang and Liu 2019), the Mann-type subgradi-
ent extragradient algorithm (MaSEGM) (Thong and Hieu 2019) and the Mann-type Tseng’s
extragradient algorithm (MaTEGM) (Thong and Hieu 2019). We use the FOM Solver (Beck
and Guttmann-Beck 2019) to effectively calculate the projections onto C and Tn . All the
programs were implemented in Matlab 2018a on a Intel(R) Core(TM) i5-8250U CPU @
1.60 GHz computer with RAM 8.00 GB.

Our parameters are set as follows. In all algorithms, set αn = 1/(n + 1) and βn =
0.5(1−αn). For the proposed algorithms and the algorithms (MaSEGM) and (MaTEGM), we
choose λ1 = 1, μ = 0.5. Take θ = 0.4, εn = 100/(n + 1)2 in our suggested algorithms. For
the algorithm (VSEGM), we choose � = 0.5,μ = 0.4 and f (x) = 0.9x . Set λ0 = 1,μ = 0.5
and f (x) = 0.9x in the algorithm (TVEGM). For the algorithm (HSEGM), we choose the
step size as λn = 0.99/L . Maximum iteration 200 as a common stopping criterion. In our
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(a) (b)

Fig. 1 Numerical results for Example 4.1 (x0 = x1 = rand(2, 1))

(a) (b)

Fig. 2 Numerical results for Example 4.1 (x0 = x1 = 5rand(2, 1))

numerical examples, the solution x∗ of the problems are known, so we use Dn = ‖xn − x∗‖
to measure the n-th iteration error.

Example 4.1 Let us consider the following nonlinear optimization problem via

min F(x) = 1 + x21 − e−x22

s.t. − 5e ≤ x ≤ 5e,
(4.1)

where x = (x1, x2)T ∈ R2 and e = (1, 1)T. Observe that ∇F(x) = (2x1, 2x2e−x22 )T and
the optimal solution for F(x) is x∗ = (0, 0)T. Taking A(x) = ∇F(x), it is easy to check
that A is monotone and Lipschizt continuous with constant L = 2 on the closed and convex
subset C = {

x ∈ R2 : −5e ≤ x ≤ 5e
}
. The initial values x0 = x1 are randomly generated

by k×rand(2,1) in Matlab. The numerical results are reported in Figs. 1 and 2.

Example 4.2 Consider the linear operator A : Rm → Rm (m = 10, 20, 50, 100) in the form
A(x) = Mx + q , where q ∈ Rm and M = NN T + U + D, N is a m × m matrix, U is a
m × m skew-symmetric matrix, and D is a m × m diagonal matrix with its diagonal entries
being nonnegative (hence M is positive symmetric definite). The feasible set C is given by
C = {x ∈ Rm : −2 ≤ xi ≤ 5, i = 1, . . . ,m}. It is clear that A is monotone and Lipschitz
continuous with constant L = ‖M‖. In this experiment, all entries of N , D are generated
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(a) (b)

Fig. 3 Numerical results for Example 4.2 (m = 10)

(a) (b)

Fig. 4 Numerical results for Example 4.2 (m = 20)

randomly in [0, 2] and U is generated randomly in [−2, 2]. Let q = 0, then the solution set
is x∗ = {0}. The initial values x0 = x1 are randomly generated by 5rand(m,1) in Matlab.
The numerical results of all the algorithms in different dimensions are shown in Figs. 3, 4, 5
and 6.

Example 4.3 Finally, we consider our problem in the Hilbert spaceH = L2([0, 1]) with the
inner product 〈x, y〉 := ∫ 1

0 x(t)y(t) dt and the induced norm ‖x‖ := (
∫ 1
0 |x(t)|2 dt)1/2,∀x,

y ∈ H . Let the feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}. Define an operator
A : C → H by

(Ax)(t) =
∫ 1

0
(x(t) − G(t, s)g(x(s))) ds + h(t), t ∈ [0, 1], x ∈ C ,

where

G(t, s) = 2tset+s

e
√
e2 − 1

, g(x) = cos x , h(t) = 2tet

e
√
e2 − 1

.

It is known that A is monotone and L-Lipschitz continuous with L = 2 and x∗(t) = {0} is
the solution of the corresponding variational inequality problem. Note that the projection on
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(a) (b)

Fig. 5 Numerical results for Example 4.2 (m = 50)

(a) (b)

Fig. 6 Numerical results for Example 4.2 (m = 100)

C is inherently explicit, that is,

PC (x) =
{ x

‖x‖L2
, if ‖x‖L2 > 1 ;

x, if ‖x‖L2 ≤ 1 .

We choose the maximum iteration of 50 as a common stopping criterion. Figs. 7, 8, 9 and 10
show the numerical behaviors of all the algorithms with four starting points x0(t) = x1(t).

Remark 4.1 (1) From Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, we know that the proposed
algorithms outperformance the existing algorithms in terms of the number of iteration
and the elapsed time. In addition, these observed results have nothing to do with the size
of the dimension and the selection of initial values.

(2) The maximum number of iterations we chose was only 200. Note that the iteration error
of algorithm (HSEGM) is very big. In actual applications, it may require more iterations
to meet the accuracy requirements.

(3) It should be pointed out that since the algorithm (VSEGM) uses the Armijo-like step size
rule, which leads to taking more execution time.
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(a) (b)

Fig. 7 Numerical results for Example 4.3 (x0(t) = x1(t) = 10et )

(a) (b)

Fig. 8 Numerical results for Example 4.3 (x0(t) = x1(t) = 5 cos(t))

(a) (b)

Fig. 9 Numerical results for Example 4.3 (x0(t) = x1(t) = 10t2)
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(a) (b)

Fig. 10 Numerical results for Example 4.3 (x0(t) = x1(t) = 10 log(t))

5 Conclusions

In this paper, we presented two new inertial extragradient algorithms with a new step size for
finding the solution set of a monotone, Lipschitz-continuous variational inequality problems
in real Hilbert spaces. We proved strong convergence theorems of the proposed algorithms
under some mild conditions imposed on parameters. Some numerical examples of finite and
infinite dimensions were performed to illustrate the performance of the suggested algorithms
and compare them with previously known ones. The two algorithms obtained in this paper
improved and extended the results of some existing literature.
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