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Abstract. In this paper, we investigate an inertial Mann-like algorithm for fixed points of nonexpansive
mappings in Hilbert spaces and obtain strong convergence results under some mild assumptions. Based on
this, we derive a forward-backward algorithm involving Tikhonov regularization terms, which converges
strongly to the solution of the monotone inclusion problem. We demonstrate the advantages of our
algorithms comparing with some existing ones in the literature via split feasibility problem, variational
inequality problem and signal recovery problem.
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1. INTRODUCTION

Let C be a nonempty convex closed subset in a real Hilbert space H , where H endowed with
inner product 〈·, ·〉 and induced norm ‖ · ‖ :=

√
〈·, ·〉. For all x,y ∈C, recall that a mapping T :

C→C is said to be (i) L-Lipschitzian iff ‖T x−Ty‖≤ L‖x−y‖ for some L > 0; (ii) nonexpansive
if ‖T x−Ty‖ ≤ ‖x− y‖. We denote Fix(T ) := {x ∈ C : T x = x} as the set of fixed points of
mapping T . The main purpose of this paper is to design a fast Mann-like iterative algorithm to
solve fixed point problems of nonexpansive mappings. It is well known that the Mann algorithm
is one of the numerous successful iterative schemes for finding a fixed point of nonexpansive
mappings. The Mann algorithm reads as follows:

xn+1 = (1−λn)xn +λnT xn , ∀n≥ 0 , (1.1)

where {λn} is a sequence of non-negative real numbers in (0,1), and x0 ∈H is an arbitrary
initial point. Under the assumption that Fix(T ) 6= /0, it is known that the sequence {xn} defined
by (1.1) converges weakly to a fixed point of T under suitable conditions forced on {λn}.

The fixed point problems of nonexpansive mappings involve many important issues, such
as, machine learning, signal restoration, image reconstruction, and so on; see, e.g., [1, 15, 19]
and the references therein. Therefore, devising efficient and stable algorithms has attracted
tremendous interest. It is known that the forward-backward algorithm and the Douglas-Rachford
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algorithm can be embedded in the framework of the Mann algorithm. One disadvantage to all
the above algorithms is that their generated iterative sequences are only weakly convergent.
However, for problems that occur in infinite-dimensional spaces, such as, image reconstruction
and quantum physics, the weak convergence is often disappointing. To obtain strong convergence,
it is usually necessary to require more restrictive properties on the operators involved, such
as, strong convexity when considering optimization problems and strong monotonicity when
analyzing monotone inclusion. Because there are situations for which these conditions are not
satisfied, the development of efficient iterative algorithms is under the spotlight. In the past two
decades, there has been extensive studies and applications of strong convergence algorithms;
see, e.g., [2, 7, 20] and the references therein. Very recently, a variant of the Mann algorithm
was proposed by Bot, Csetneki and Meier [4], which overwhelms the shortcoming of the weak
convergence and reads as follows:

xn+1 = βnxn +λn (T (βnxn)−βnxn) , ∀n≥ 0. (1.2)

They showed the iterative sequence {xn} defined by (1.2) is strongly convergent when {λn} and
{βn} satisfies some suitable assumptions. Based on (1.2), they obtained a strongly convergent
forward-backward algorithm for monotone inclusion problems. We emphasize that {βn} in the
above scheme is the Tikhonov regularization sequence, which plays the role to enforce the strong
convergence property. More theoretical results and motivational arguments of the Tikhonov
regularization technique can be found in [3]. For some numerical algorithms to implement the
strong convergence by means of this technique, we recommend readers refer to [4, 22].

In recent years, various fast iterative algorithms have been investigated. One of the algorithms
is the inertial algorithm, which can be traced back to Polyak [18]. Polyak first introduced an
inertial extrapolation technique for minimizing a smooth convex function. One of the common
characteristics of the inertial algorithms is that the next iterate depends on the combination of the
previous two iterates. It should be mentioned that this minor change greatly improves the perfor-
mance of the algorithms. With the help of inertial techniques, numerous fast iterative algorithms
have been constructed, such as, inertial Mann algorithms [17, 28], inertial forward-backward
splitting algorithms [21, 27], inertial projection algorithms [24, 26] and inertial extragradient
algorithms [10, 12]. These inertial-type algorithms have better numerical performance than
algorithms without inertial terms.

Inspired and motivated by the above results, we propose an inertial Mann-like algorithm with
the aid of the famous Nesterov acceleration method for fixed points of nonexpansive mappings in
infinite-dimensional Hilbert spaces. We also derive a forward-backward algorithm endowed with
Tikhonov regularization terms, which generate an iterative sequence that converges strongly to
the minimal norm solution in the set of zeros. Finally, we provide some numerical experiments
that demonstrate the advantages of our proposed algorithms by comparing them with some
related ones. The algorithms obtained in this paper improve some known results in the literature.

The present paper is built up as follows. In the next section, we provide some preliminary
knowledge and lemmas needed to perform our convergence analysis. Section 3 presents a
strongly convergent inertial Mann-like algorithm and analyzes its convergence. Section 4 shows
the applications of our algorithm to the problems of monotone inclusion and variational inequality.
Section 5 illustrates the potential of our algorithms using numerical examples on split feasibility
problems in infinite-dimensional Hilbert spaces, variational inequality problems, and signal
recovery. Finally, it concludes this paper with a brief summary in Section 6, the last section.
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2. PRELIMINARIES

Throughout this paper, the notations → and ⇀ denote strong and weak convergence, re-
spectively. Let H be a real Hilbert space. For any x,y ∈ H , one has: (i) ‖x− y‖2 =
‖x‖2 +‖y‖2−2〈x,y〉; (ii) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉. Let α ∈ (0,1) be fixed. We recall that
an operator R : H →H is said to be α-averaged, if R can be expressed as R = (1−α)Id+αT ,
where T : H →H is a nonexpansive operator and Id is an identity operator defined on H . It is
easy to prove that α-averaged operators are also nonexpansive. Let A : H ⇒ H be a set-valued
operator, and its graph is represented as GraphA := {(x, p) ∈H ×H : p ∈ Ax}. The operator
A is said to be (i) monotone, if 〈x− y, p−q〉 ≥ 0 for all (x, p),(y,q) ∈ GraphA; (ii) maximally
monotone if it is monotone and there exists no proper monotone extension of the graph of
A on H ×H ; (iii) η-inverse strongly monotone if there exists a constant η > 0 such that
〈x−y,Ax−Ay〉 ≥ η‖Ax−Ay‖2 for all x,y∈H . The resolvent of A, JA : H →H , is defined by
JA := (Id+A)−1. Further, we denote by RA : H →H , RA := 2JA− Id, the reflected resolvent
of A. If A is maximally monotone, then JA : H →H is single-valued, maximally monotone and
nonexpansive (see [6]). Moreover, 0 ∈ A(x)+B(x) if and only if x = JγA(I− γB)(x), ∀γ > 0. If
B is η-inverse strongly monotone with 0 < γ < 2η , then JγA(I− γB) is averaged.

We recall that if f : H → R∪{+∞} is a proper, convex and lower semicontinuous function,
then the subdifferential of f , ∂ f : H ⇒ H , is defined by

∂ f (x) := {u ∈H : f (y)− f (x)≥ 〈u,y− x〉, ∀y ∈H } ,

for x ∈H with f (x) 6=+∞. We denote the proximal operator of f as follows:

prox f : H →H , prox f (x) := argminy∈H

{1
2
‖y− x‖2 + f (y)

}
.

It should be noted that the proximal operator of f equivalent to the resolvent of ∂ f (see [6]), i.e.,
prox f = J∂ f . For a nonempty closed and convex set C ⊆H , one sees that PC = proxδC

, where

δC(x) =
{

0 , x ∈C ;
+∞ , x /∈C,

denotes the indicator function of C. From the Baillon-Haddad Theorem (see [6, Corollary
18.16]), if g : H → R is a convex and Fréchet differentiable function with 1

η
-Lipschitz gradient,

then ∇g : H →H is an η-inverse strongly monotone operator.
In the rest of this section, we recall some lemmas that will play an indispensable role in the

convergence analysis of the proposed algorithm.

Lemma 2.1 (Demi-closed principle). Assume that C is a nonempty closed convex subset of a
real Hilbert space H . Let T : C→H be a nonexpansive mapping. Let {xn} be a sequence in
C and x ∈H such that xn ⇀ x and T xn− xn→ 0 as n→+∞. Then x ∈ Fix(T ).

Lemma 2.2. [29] Let {an} be a sequence of non-negative real numbers such that

an+1 ≤ (1−µn)an + τn +υn , n≥ 1 ,

where {µn} is a sequence in (0,1) and {τn} is a real sequence. Assume that ∑
∞
n=1 υn < ∞. Then,

the following results hold:
(i) If τn ≤ µnM for some M ≥ 0, then {an} is a bounded sequence;

(ii) If ∑
∞
n=1 µn = ∞ and lim supn→∞

τn
µn
≤ 0, then limn→∞ an = 0.
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3. A STRONGLY CONVERGENT INERTIAL MANN-LIKE ALGORITHM

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H and let T : C→C
be a nonexpansive mapping such that Fix(T ) 6= /0. Suppose that the following conditions are
satisfied:

(C1) limn→+∞ αn = 0, ∑
∞
n=0 αn = ∞, αn ∈ (0,1), βn ∈ [a,b]⊂ (0,1];

(C2) limn→+∞
θn
αn
‖xn− xn−1‖= 0.

Set x0,x1 arbitrarily. Define a sequence {xn} in C by the following iterative scheme:
wn = xn +θn(xn− xn−1) ,

yn = (1−αn)wn ,

xn+1 = (1−βn)yn +βnTyn , n≥ 1 .
(3.1)

Then the iterative sequence {xn} defined by (3.1) converges to a fixed point of T in norm.

Proof. To begin with, our first goal is to show that {xn} is bounded. Indeed, For any u ∈ Fix(T ),
since T is nonexpansive, one sees that

〈T x−u,T x−u〉 ≤ 〈x−u,x−u〉
=⇒〈T x−u,T x−u〉 ≤ 〈x−u,x−T x〉+ 〈x−u,T x−u〉
=⇒〈T x−u,T x− x〉 ≤ 〈x−u,x−T x〉
=⇒〈T x− x,T x− x〉+ 〈x−u,T x− x〉 ≤ 〈x−u,x−T x〉

=⇒‖T x− x‖2 ≤ 2〈x−u,x−T x〉 .

(3.2)

From the definition of xn+1 and (3.2), we obtain

‖xn+1−u‖2 = ‖(yn−u)−βn (yn−Tyn)‖2

= ‖yn−u‖2−2βn 〈yn−u,yn−Tyn〉+β
2
n ‖yn−Tyn‖2

≤ ‖yn−u‖2−βn (1−βn)‖yn−Tyn‖2

≤ ‖yn−u‖2 ,

(3.3)

which yields
‖xn+1−u‖ ≤ ‖yn−u‖= ‖(1−αn)(wn−u)−αnu‖

≤ (1−αn)‖wn−u‖+αn‖u‖
≤ (1−αn)‖xn−u‖+αn‖u‖+(1−αn)θn‖xn− xn−1‖ .

(3.4)

Due to the fact that supn≥1
θn
αn
‖xn− xn−1‖ exists. Let

M := 2max
{
‖u‖,sup

n≥1

(1−αn)θn

αn
‖xn− xn−1‖

}
.

As a result, inequality (3.4) is reduced to the following

‖xn+1−u‖ ≤ (1−αn)‖xn−u‖+αnM .

Using Lemma 2.2, it is easy to check that {xn} is bounded. On the other hand, according to the
definition of wn, one has

‖wn−u‖2 = ‖xn−u‖2 +2θn 〈xn− xn−1,xn−u〉+θ
2
n ‖xn− xn−1‖2 . (3.5)
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Combining boundedness of {xn} and condition (C2), we observe that {wn} is bounded, and thus
{yn} is also bounded. From (3.1), we note that

yn−Tyn = 1/βn · (yn− xn+1) , (3.6)

and

‖wn− xn+1‖2 = ‖xn− xn+1‖2 +2θn〈xn− xn+1,xn− xn−1〉+θ
2
n ‖xn− xn−1‖2 . (3.7)

By using (3.3) and (3.6), we obtain

‖xn+1−u‖2 ≤ ‖yn−u‖2−βn (1−βn)‖yn−Tyn‖2

≤ ‖yn−u‖2− 1−βn

βn
‖yn− xn+1‖2 .

(3.8)

Since 0 < a < βn ≤ b≤ 1 and 1−βn
βn
≥ 1−b

b = k, from (3.5), (3.7) and (3.8), we have

‖xn+1−u‖2 ≤ ‖yn−u‖2− k‖yn− xn+1‖2

= ‖wn−u−αnwn‖2− k‖wn− xn+1−αnwn‖2

= ‖wn−u‖2−2αn 〈wn,wn−u〉+α
2
n ‖wn‖2

− k‖wn− xn+1‖2 +2kαn 〈wn,wn− xn+1〉− kα
2
n ‖wn‖2

= ‖wn−u‖2− k‖xn+1−wn‖2 +αn{−2〈wn,wn−u〉

+2k 〈wn,wn− xn+1〉+(1− k)αn ‖wn‖2}

= ‖xn−u‖2− k‖xn− xn+1‖2 +2θn 〈xn− xn−1,xn−u〉

+2kθn〈xn− xn+1,xn− xn−1〉+(1− k)θ 2
n ‖xn− xn−1‖2

+αn{−2〈wn,wn−u〉+2k 〈wn,wn− xn+1〉+(1− k)αn ‖wn‖2} .

(3.9)

Because {xn} and {wn} are bounded, we have that there exists a constant M1 ≥ 0 such that

−2〈wn,wn−u〉+2k 〈wn,wn− xn+1〉+(1− k)αn ‖wn‖2 ≤M1,∀n≥ 0 .

Let

M2 = 2θn 〈xn− xn−1,xn−u〉+2kθn〈xn− xn+1,xn− xn−1〉+(1− k)θ 2
n ‖xn− xn−1‖2 .

It follows from (3.9) that

‖xn+1−u‖2−‖xn−u‖2 + k‖xn+1− xn‖2 ≤ αnM1 +M2 . (3.10)

Next we prove that {xn} converges strongly to u by considering two possible cases.
Case 1. Suppose that the sequence {‖xn−u‖} is a monotonically decreasing sequence. Then
{‖xn−u‖} is convergent. Obviously, we obtain ‖xn+1−u‖2−‖xn−u‖2→ 0, which together
with conditions (C1), (C2) and (3.10) indicates that

‖xn+1− xn‖→ 0 . (3.11)

On the other hand, it is easy to see that

‖wn− xn+1‖ ≤ ‖xn− xn+1‖+θn‖xn− xn−1‖→ 0 , (3.12)

and
‖yn−wn‖ ≤ αn ‖wn‖→ 0 . (3.13)
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It follows from (3.12) and (3.13) that

‖yn− xn+1‖ ≤ ‖yn−wn‖+‖wn− xn+1‖→ 0 . (3.14)

By using (3.11) and (3.14), we have

‖yn− xn‖ ≤ ‖yn− xn+1‖+‖xn+1− xn‖→ 0 , (3.15)

and
‖yn−Tyn‖ ≤ 1/βn · ‖yn− xn+1‖→ 0 . (3.16)

Combining (3.15) and (3.16), one sees that

‖xn−T xn‖ ≤ ‖xn− yn‖+‖yn−Tyn‖+‖Tyn−T xn‖
≤ 2‖xn− yn‖+‖yn−Tyn‖→ 0 .

(3.17)

Therefore, from the fact that I−T is demi-closed, we can easily proved that {xn} and {yn}
converge weakly to a fixed point of T .

Next, it remains to show that {xn} and {yn} converge strongly to u. In view of (3.4), we get

‖xn+1−u‖2 ≤ ‖yn−u‖2 = ‖(1−αn)(wn−u)−αnu‖2

≤ (1−αn)‖wn−u‖2−2αn 〈yn−u,u〉

≤ (1−αn)‖xn−u‖2 +2θn 〈xn− xn−1,xn−u〉

+θ
2
n ‖xn− xn−1‖2−2αn 〈yn−u,u〉 .

(3.18)

Due to conditions (C1) and (C2), we deduce that

2θn 〈xn− xn−1,xn−u〉+θ
2
n ‖xn− xn−1‖2−2αn 〈yn−u,u〉 → 0 .

Thus, we get from Lemma 2.2 and (3.18) that xn→ u. Further, it is easy to verify that yn→ u.
Case 2. Suppose that {‖xn−u‖} is not a monotonically decreasing sequence. Set Φn =

‖xn−u‖2. Let τ(n) : N→ N be a mapping for all n≥ n0 (for some large enough n0), defined by
τ(n) = max{k ∈ N : k ≤ n,Φk ≤Φk+1} . Obviously, τ(n) is non-decreasing with τ(n)→ ∞ as
n→ ∞ and Φτ(n) ≤Φτ(n)+1 for n≥ n0. It follows from (3.10) that

‖xτ(n)+1− xτ(n)‖2 ≤
ατ(n)M1 +M2

k
→ 0 ,

which implies that ‖xτ(n)+1− xτ(n)‖ → 0 as n→ ∞. By the same argument as (3.12)–(3.17) in
Case 1, we infer directly that xτ(n) and yτ(n) converge weakly to u as τ(n)→ ∞. In addition,
from (3.18), we note that, for all n≥ n0,

0≤ ‖xτ(n)+1−u‖2−‖xτ(n)−u‖2

≤ ατ(n)
[
2〈u− yτ(n),u〉−‖xτ(n)−u‖2]

+2θτ(n)〈xτ(n)− xτ(n)−1,xτ(n)−u〉+θ
2
τ(n)‖xτ(n)− xτ(n)−1‖2 ,

which implies that

‖xτ(n)−u‖2 ≤ 2〈u− yτ(n),u〉+
2θτ(n)〈xτ(n)− xτ(n)−1,xτ(n)−u〉

ατ(n)

+
θ 2

τ(n)‖xτ(n)− xτ(n)−1‖2

ατ(n)
.

(3.19)
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Hence, combining (3.19) and condition (C2), we deduce that limn→∞ ‖xτ(n)− u‖ = 0. Thus,
limn→∞ Φτ(n)= limn→∞ Φτ(n)+1 = 0. Moreover, for any n≥ n0, it is easy to see that Φn≤Φτ(n)+1
if n 6= τ(n) (i.e., τ(n)< n), since Φ j > Φ j+1 for τ(n)+1≤ j ≤ n. Consequently, for all n≥ n0,

0≤Φn ≤max
{

Φτ(n),Φτ(n)+1
}
= Φτ(n)+1 .

Therefore, we conclude that limn→∞ Φn = 0. This shows that sequence {xn} converges to u in
norm. Moreover, it easy to check that {yn} converges to u in norm. The proof is completed. �

Remark 3.1. From Algorithm (3.1), we have the following observations:
(i) We comment here that condition (C2) is easy to implement in numerical computation

because the value of ‖xn− xn−1‖ is known before choosing θn. For a special choice, the
parameter θn in the Algorithm (3.1) can be choosen from the following:

0≤ θn ≤ θ̄n, θ̄n =

{
min

{
ξn

‖xn−xn−1‖ ,
n−1

n+η−1

}
, if xn 6= xn−1 ;

n−1
n+η−1 , otherwise ,

(3.20)

for some η ≥ 3 and {ξn} is a positive sequence such that limn→∞
ξn
αn

= 0. This idea
comes from the recent inertial extrapolated step introduced in [5].

(ii) For the Tikhonov regularization sequence {αn}, one can choose, for instance, αn =
1

n+1
for any n≥ 1.

(iii) If θn = 0 for all n≥ 1 in Algorithm (3.1), then we obtain the results recently proposed by
Bot, Csetnek and Meier [4]. It should be noted that our conditions are weaker than [4].

(iv) If αn = 0 in Algorithm (3.1), then we get the inertial Mann algorithm proposed by
Maingé [17].

In the next section, the following result will play a decisive role in the converge analysis of
the forward-backward method endowed with the Tikhonov regularization term.

Corollary 3.1. Let C be a closed convex subset of a real Hilbert space H and let R : C→C
be an α-averaged mapping, where α ∈ (0,1), with Fix(R) 6= /0. Assume that the following
conditions are satisfied:

(D1) limn→+∞ αn = 0, ∑
∞
n=0 αn = ∞, αn ∈ (0,1), βn ∈ [a,b]⊂ (0, 1

α
];

(D2) limn→+∞
θn
αn
‖xn− xn−1‖= 0.

Set x0,x1 arbitrarily. Generate a sequence {xn} in C by the following iterative scheme:
wn = xn +θn(xn− xn−1) ,

yn = (1−αn)wn ,

xn+1 = (1−βn)yn +βnRyn , n≥ 1 .
(3.21)

Then the iterative sequence {xn} generated by (3.21) converges to a fixed point of R in norm.

Proof. There exists a nonexpansive operator T : H →H such that R = (1−α)Id+αT since
R is α-averaged operator. Observe that (3.21) is equivalent to

wn = xn +θn(xn− xn−1) ,

yn = (1−αn)wn ,

xn+1 = (1−αβn)yn +αβnTyn , n≥ 1 ,

and that Fix(R)= Fix(T ). From Theorem 3.1, we obtain the desired conclusion immediately. �
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4. APPLICATIONS

4.1. Monotone inclusions. Based on the general iterative scheme in Theorem 3.1, we will
develop a strongly convergent inertial forward-backward algorithm with Tikhonov regularization
terms in this subsection to solve the following monotone inclusion problem

find x ∈H such that 0 ∈ Ax+Bx , (4.1)

where A : H ⇒ H is a maximally monotone operator and B : H →H is a η-inverse strongly
monotone operator. Monotone inclusion problem (4.1) include some practical problems in image
processing, machine learning and linear inverse problem.

Theorem 4.1. Let A : H ⇒ H be a maximally monotone operator and let B : H →H be an
η-inverse strongly monotone operator such that Fix(A+B) 6= /0. Let γ ∈ (0,2η ]. Assume that
the following conditions are satisfied:

(M1) limn→+∞ αn = 0, ∑
∞
n=0 αn = ∞, αn ∈ (0,1), βn ∈ [a,b]⊂ (0,(4η− γ)/2η ];

(M2) limn→+∞
θn
αn
‖xn− xn−1‖= 0.

Set x0,x1 arbitrarily. Make a sequence {xn} in C by the following iterative scheme:
wn = xn +θn(xn− xn−1) ,

yn = (1−αn)wn ,

xn+1 = (1−βn)yn +βnJγA(yn− γB(yn)) , n≥ 1 .
(4.2)

Then the iterative sequence {xn} maked by (4.2) converges to P(A+B)−1(0) in norm.

Proof. It is easy to see that iterative scheme (4.2) can be written as (3.1), where T = JγA ◦
(Id− γB). We consider two situations to analyze it. The first one is γ ∈ (0,2η). By means of
[6, Corollary 23.8 and Remark 4.24(iii)], JγA is 1/2-inverse strongly monotone. Furthermore,
according to [6, Proposition 4.33], Id− γB is γ/2η-averaged. Therefore, it follows from [4,
Proposition 6] that T is 2η/(4η − γ)-averaged. The statement now comes from Corollary
3.1, by noticing that Fix(T ) = (A+B)−1(0). The second case is γ = 2η . Note that Id− γB
is nonexpansive, and thus T = JγA ◦ (Id− γB) is also nonexpansive. From Theorem 3.1, we
conclude the desired conclusion immediately. �

Remark 4.1. From Theorem 4.1, we have the following conclusions:

(i) If βn = 1 and B = 0, then iterative scheme (4.2) becomes xn+1 = JγA ((1−αn)wn). This
equation can be equivalently written as

wn ∈
1

1−αn
xn+1 +

γ

1−αn
Axn+1 =

(
Id+ εnId+

γ

1−αn
A
)
(xn+1) ,

where εnId (with εn := 1
1−αn

− 1 > 0 and limn→+∞ εn = 0 ) denotes the Tikhonov reg-
ularization term, which enforces the strong convergence of iterative sequence {xn} to
the minimal norm solution. For Tikhonov-like methods to solve monotone inclusion
problems, we recommend the readers to [4, 16, 23] and the references therein.

(ii) Let f : H → (−∞,+∞) be a proper, convex and lower-semicontinuous function, and let
g : H → R be a convex and Fréchet differentiable function with 1

η
-Lipschitz continuous
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gradient such that argmin( f +g) 6= /0. Let γ ∈ (0,2η ]. The following iteration scheme
wn = xn +θn(xn− xn−1) ,

yn = (1−αn)wn ,

xn+1 = (1−βn)yn +βn proxγ f (yn− γ∇g(yn)) , n≥ 1 ,
(4.3)

where initial points x0,x1 ∈H and {θn}, {αn} and {βn} are real sequences satisfying
the conditions (M1) and (M2) in Theorem 4.1. Then the sequence {xn} created by (4.3)
converges to Pargmin( f+g)(0) in norm.

4.2. Variational inequalities. We consider the following variational inequality problem:

find x∗ ∈C such that 〈Ax∗,y− x∗〉 ≥ 0 , ∀y ∈C , (4.4)

where A : H →H is an operator and C is a nonempty convex closed subset of H . It is known
that x∗ is a solution of (4.4) iff x∗ = PC(x∗−λAx∗), where λ is an arbitrary positive constant.

Theorem 4.2. Let A : H →H be a monotone and L-Lipschitz continuous operator on a
nonempty closed and convex subset C and λ ∈ (0,1/L). Set T := PC(Id−λA). Assume that the
following conditions are satisfied:

(V1) limn→+∞ αn = 0, ∑
∞
n=0 αn = ∞, αn ∈ (0,1), βn ∈ [a,b]⊂ (0,1];

(V2) limn→+∞
θn
αn
‖xn− xn−1‖= 0.

Set x0,x1 arbitrarily. Define a sequence {xn} in C by the following iterative scheme:
wn = xn +θn(xn− xn−1) ,

yn = (1−αn)wn ,

xn+1 = (1−βn)yn +βnPC(Id−λA)yn , n≥ 1 .
(4.5)

Then the iterative sequence {xn} defined by (4.5) converges to PFix(T )(0) in norm.

Proof. We can easily conclude from Theorem 3.1 since T = PC(Id−λA) is nonexpansive. �

5. NUMERICAL EXPERIMENTS

In this section, we provide some numerical experiments that appear in finite and infinite
dimensional spaces to demonstrate the computational performance of our proposed algorithms
and compare them with some previously known ones. All the programs were implemented in
MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz computer.

Example 5.1. Assume that H1 and H2 are real Hilbert spaces and T : H1→H2 is a bounded
linear operator. Let C and Q be nonempty closed and convex subsets of H1 and H2, respectively.
For the first numerical experiment, we consider the split feasibility problem (SFP) in infinite-
dimensional Hilbert spaces, which reads as

find x∗ ∈C such that T x∗ ∈ Q . (5.1)

We will use the strongly convergent algorithm described in (4.3) to solve the (SFP). For this
purpose, it should be mentioned that problem (5.1) can be equivalently expressed as

min
x∈H

{1
2
‖T x−PQ(T x)‖2 +δC(x)

}
.
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We choose f (x) = δC(x) and g(x) = 1
2 ‖T x−PQ(T x)‖2 under the framework of Remark 4.1 (ii).

Note that g is Fréchet differentiable with gradient ∇g = T ∗ ◦ (Id−PQ)◦T , and it holds

‖∇g(x1)−∇g(x2)‖ ≤ ‖L‖2 ‖x1− x2‖ , ∀x1,x2 ∈H .

Therefore, the gradient of g is ‖L‖2-Lipschitz continuous. The iterative scheme stated in (4.3)
applied to problem (5.1) reads:

wn = xn +θn(xn− xn−1) ,

yn = (1−αn)wn ,

vn = (T ∗ ◦ (Id−PQ)◦T )yn ,

xn+1 = (1−βn)yn +βnPC(yn− γvn) , n≥ 1 ,

(5.2)

where 0 < γ < 2L with Lipschitz constant L = 1/‖T‖2.
Let L2([0,2π]) :=

{
f : [0,2π]→ R :

∫ 2π

0 | f (t)|2 dt < +∞
}

. For any f ,g ∈ L2([0,2π]), we
consider H1 = H2 = L2([0,2π]) embedded with the inner product 〈 f ,g〉 :=

∫ 2π

0 f (t)g(t)dt and

the induced norm ‖ f‖ :=
(∫ 2π

0 | f (t)|2 dt
) 1

2 . Consider the following nonempty closed and convex
subsets C and Q in L2([0,2π]):

C =
{

x ∈ L2([0,2π]) |
∫ 2π

0
x(t)dt ≤ 1

}
,

Q =
{

x ∈ L2([0,2π]) |
∫ 2π

0
|x(t)− sin(t)|2 dt ≤ 16

}
.

Let T : L2([0,2π])→ L2([0,2π]) be a bounded linear operator with its adjoint T ∗. We define
(T x)(t) := x(t). As a result, we have (T ∗x)(t) = x(t) and ‖T‖= 1. It is clear that the solution
set of (5.1) is nonempty since x(t) = 0 is a solution.

Inspired by reference [6], we use the following formulas to calculate the projections onto the
sets C and Q, respectively.

PC(x) =
{ 1−a

4π2 + x , a > 1;
x , a≤ 1 .

and PQ(x) =

{
sin(·)+ 4(x−sin(·))√

b
, b > 16;

x , b≤ 16 ,

where a =
∫ 2π

0 x(t)dt and b =
∫ 2π

0 |x(t)− sin(t)|2 dt.
We compare the number of iterations of the variants without and with Tikhonov regularization

terms of the Algorithm (5.2), for different starting values and different inertial terms (cf., Table 1).
We use the following stopping criterion

En =
1
2
‖PC(xn)− xn‖2 +

1
2
‖PQ(T xn)−T xn‖2 < 10−3 .

In (5.2), inertial term θn is updated by (3.20) with ξn = 10
(n+1)2 and η = 4, take relaxation

variables βn = 0.9, step sizes γ = 0.25 for every n≥ 1 and Tikhonov regularization parameters
αn =

1
n+1 for every n≥ 1, respectively, αn = 0 for every n≥ 1 for the variants without Tikhonov

regularization terms. We use symbolic computation in MATLAB to implement these algorithms
for generating the iterative sequence. The numerical results are shown in Table 1.

Remark 5.1. (i) As indicated in Table 1, the numerical experiments show that the proposed
Algorithm (5.2) involving Tikhonov regularization terms outperforms the ones without
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TABLE 1. Comparison of the variants without and with Tikhonov regularization
terms of Algorithm (5.2) in Example 5.1.

θn 6= 0 θn = 0

x0 x1 αn = 0 αn =
1

n+1 αn = 0 αn =
1

n+1

t2

10
t2

10 7 3 14 3

t2

10
2t

2 18 6 24 8

t2

10
et

2 29 10 32 11

t2

10
et

2 + t2

24 33 13 35 14

Tikhonov regularization terms (i.e., αn = 0), and these results are not affected by the
initial values. It should be noted that the Algorithm (5.2) without Tikhonov regularization
terms is only weakly convergent.

(ii) It can be easily seen from Table 1 that the convergence speed of our proposed Algo-
rithm (5.2) is faster than the ones without inertial terms proposed by Bot et al. [4].

Furthermore, we compare our Algorithm (5.2) with some previously known ones, see Table 2
for conditions and parameter values of those strong convergence algorithms. The parameters of
Algorithm (5.2) are the same as above. Take En < 10−3 or maximum iteration 200 as a common
stopping criterion. We implement this experiment by considering four different initial values
x0,x1 (here, Case I: x0 =

t2

10 ,x1 =
et

2 ; Case II: x0 =
t2

10 ,x1 =
2t

2 + t2

10 ; Case III: x0 =
t2

10 ,x1 =
et

20 +
t2

24 ;
Case IV: x0 =

t2

10 ,x1 =
2t

2 + et

20 ). Computational results are reported in Table 3 and Figs. 1–4.

TABLE 2. Conditions and parameter values of different strong convergence algorithms.

Algorithms Conditions Parameter values

Bot et al. Alg. (2) [4]
(i) βn ⊂ (0,1],λn ⊂ (0,1];
(ii) limn→+∞ βn = 1,∑∞

n=0 (1−βn) = +∞;
(iii) ∑

∞
n=1 |βn−βn−1|< ∞;

(iv) liminfn→+∞ λn > 0 and ∑
∞
n=1 |λn−λn−1|< ∞.

βn =
n

n+1
, λn = 0.9.

xn+1 = βnxn +λn(T (βnxn)−βnxn).

Yao and Cho Alg. (3.7) [7]
(i) αn ⊂ (0,1),λn ⊂ (0,1);
(ii) limn→∞ αn = 0 and limn→∞ λn = 1;
(iii) ∑

∞
n=0 |αn−αn−1|< ∞,∑∞

n=0 |λn−λn−1|< ∞;
(iv) ∑

∞
n=0 (1−λn)αn = ∞.

αn =
1√

n+1
, λn = 1− 1√

n+1
.

xn+1 = αn (λnxn)+(1−αn)T xn.

Tan et al. Alg. (13) [28]
(i) βn ⊂ (0,1),γn ⊂ (0,1);
(ii) limn→+∞

θn
γn
‖xn− xn−1‖= 0;

(iii) limn→∞ γn = 0,∑∞
n=0 γn = ∞.

θn update by (3.20) with ξn =
10

(n+1)2 ,η = 4 ,

βn =
1

100(n+1)2 , γn =
1

n+1
, f (xn) = 0.9xn.


wn = xn +θn(xn− xn−1) ,

yn = βnwn +(1−βn)Twn ,

xn+1 = γn f (xn)+(1− γn)yn .

Dong et al. Alg. (22) [11]

(i) αn ⊂ [α1,α2] , α1 ∈ (−∞,0], α2 ∈ [0,∞);
(ii) βn ⊂ [β ,1], β ∈ (0,1].

αn = 0.5, βn = 0.9.



wn = xn +αn (xn− xn−1) ,

yn = (1−βn)wn +βnTwn ,

Cn = {z ∈H : ‖yn− z‖ ≤ ‖wn− z‖} ,
Qn = {z ∈H : 〈xn− z,xn− x0〉 ≤ 0} ,
xn+1 = PCn∩Qnx0.

Shehu et al. Alg. 3.1 [25]
(i) αn ⊂ (0,1),βn ⊂ (0,1),γn ⊂ (0,1);
(ii) limn→∞ αn = 0,∑∞

n=1 αn = ∞, limn→∞
ξn
αn

= 0;
(iii) αn +βn + γn = 1 and liminfn→∞ βnγn > 0;
(iv) Either ∑

∞
n=1 ‖en‖< ∞ or limn→∞

‖en‖
αn

= 0.

θn update by (3.20) with ξn =
10

(n+1)2 ,η = 4,

αn =
1

n+1
, βn = γn =

n
2(n+1)

, en = 0.
{

yn = xn +θn (xn− xn−1) ,

xn+1 = αnx0 +βnyn + γnTyn + en.
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TABLE 3. Numerical results of different algorithms for Example 5.1.

Our Alg. (5.2) Bot et al. Alg. (2) Yao and Cho Alg. (3.7) Tan et al. Alg. (13) Dong et al. Alg. (22) Shehu et al. Alg. 3.1

Cases Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)

I 10 3.7068 11 3.4814 13 3.8794 26 10.0685 >200 86.9974 >200 73.6488
II 6 2.2128 9 2.7769 10 2.9613 17 6.5503 >200 87.6840 >200 73.2906
III 5 1.9614 7 2.1968 7 2.2379 14 5.5790 >200 92.2960 >200 74.4269
IV 7 2.6032 9 2.7078 10 2.9121 19 7.8907 >200 91.3503 >200 74.3966
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Bot et al. Alg. (2)
Yao and Cho Alg. (3.7)
Tan et al. Alg. (13)
Dong et al. Alg. (22)
Shehu et al. Alg. 3.1

FIGURE 1. Numerical behavior of {En} for Example 5.1 in (Case I).
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Shehu et al. Alg. 3.1

FIGURE 2. Numerical behavior of {En} for Example 5.1 in (Case II).



AN INERTIAL MANN-LIKE ALGORITHM FOR FIXED POINTS 347

0 20 40 60 80 100 120 140 160 180 200
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FIGURE 3. Numerical behavior of {En} for Example 5.1 in (Case III).
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FIGURE 4. Numerical behavior of {En} for Example 5.1 in (Case IV).

Remark 5.2. (i) It is observed from Table 3 and Figs. 1–4 that our Algorithm (5.2) involving
Tikhonov regularization terms is convergent, easy to implement, and very fast.

(ii) Our proposed Algorithm (5.2) improves some previously known algorithms and results
from the perspective of the number of iterations and CPU time.

(iii) Since the choice of initial values does not affect the number of iterations and CPU time
required to obtain the desired results, our proposed algorithm is reliable and robust.
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Example 5.2. In next example, we consider the variational inequality problem described in (4.4).
We set A :=

(
ai j
)

1≤i, j≤m to be a square matrix of m×m, and its elements are given by:

ai j =


1 , if j = m+1− i and j < i ;
−1 , if j = m+1− i and j > i ;
0 , otherwise .

Take the set C := {−5≤ xi≤ 5, i = 1,2, . . . ,m} as a feasible region. We know that x∗ = (0, . . . ,0)
is a solution of this problem. This example has been studied by many authors. In order to
compare the efficiency between different algorithms, we consider our proposed Algorithm (4.5),
the extragradient method (EGM) in [14], the subgradient extragradient method (SEGM) in [8],
and the new inertial subgradient extragradient method (NISEGM) in [12]. In Algorithm EGM
and Algorithm SEGM, we take λ = 0.7. In Algorithm NISEGM, we set αn = 0.1, τn =

n
(n+1)1.1

and λn = 0.8. In our Algorithm (4.5), let inertial parameter θn be updated by (3.20) with
ξn =

10
(n+1)2 and η = 21, βn = 0.9, λ = 0.7 and Tikhonov regularization parameters αn =

n
(n+1)1.1 .

We take different values of dimension m into consideration and En = ‖xn− x∗‖2 < 10−4 as the
stopping criterion. The initial values x0,x1 are randomly generated in MATLAB. Table 4 shows
the numerical performance of these algorithms in different dimensions. The evolution trend of
their iteration errors En with the number of iterations is plotted in Fig. 5.

TABLE 4. Comparison between Algorithm (4.5), NISEGM, EGM and SEGM for Example 5.2.

Algorithm (4.5) NISEGM EGM SEGM

m Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)

100 11 0.0056 85 0.0148 91 0.0073 94 0.0089
1000 12 0.0234 92 0.1234 99 0.1719 101 0.2016
2000 14 0.0588 94 0.6591 101 0.7023 104 0.7473
5000 15 0.3262 97 3.9382 105 4.3697 107 4.4306

Remark 5.3. (i) From Table 4 and Fig. 5, we know that our Algorithm (4.5) is convergent,
easy to implement, and most important very fast. Moreover, the choice of dimensions
does not affect our computational results, one can notice that the jumping change of the
dimension has little effect on the number of iterations required by our algorithm.

(ii) In both of the CPU time and the number of iterations, we also find that our proposed
Algorithm (4.5) outperforms some previously known algorithms and results.

Example 5.3. In this example, we consider using the Algorithm (4.3) to solve the linear inverse
problem that occurs in signal processing, which leads us to study the following problem Ax0 =
b+w, where A ∈ RM×N represents a known linear operator, b ∈ RM is a known blurred signal,
w ∈ RM is the assumed known noise vector, and x0 ∈ RN with k (k� N) non-zero elements is
the “true” and unknown sparse signal to be recovered. In this problem, we consider A as a filter,
and Ax = ϕ ?x, where ϕ is a second derivative of Gaussian. In addition, we assume M = N. In
order to obtain an approximate solution of signal x0, we use the following `1-norm regularized
least squares model

min
x∈RN

Φ(x) =
1
2
‖b−Ax‖2 +λ‖x‖1 , (5.3)
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FIGURE 5. Numerical behavior of {En} with different dimensions for Example 5.2.

where λ is a positive regularization parameter that controls the trade-off between sparsity and
reconstruction fidelity. Model (5.3) is referred to as the basis pursuit denoising, which has wide
applications in image processing, compressed sensing, statistics, and machine learning. Many
authors constructed efficient computational algorithms to solve it. One can notice that (5.3) is a
special case of minimizing { f +g}, where f (x) = λ‖x‖1 and g(x) = 1

2‖b−Ax‖2. The proximal
operator of f has a simple solution proxγ f (xk) = max(0,1−λγ/|xk|)xk, which is so-called “soft
thresholding”. Furthermore, it is easy to check that g is a smooth function with ‖A∗A‖-Lipschitz
continuous gradient ∇g(x) = A∗(Ax−b).

We compare our Algorithm (4.3) with another strong convergence algorithm proposed by
Gibali and Thong in [13] and the forward-backward algorithm (FBA) in [9]. In all algorithms, set
N = 1000, k = 30, w is a Gaussian white noise with variance 10−2, and regularization parameter
λ = 1

2 in (5.3). In Algorithm FBA, set step size γ = 1.9/L. In Gibali and Thong’s Algorithm 1,
take step size γ = 1.9/L, αn =

1
n+1 , βn =

n
2(n+1) and µ = 0.5. In our Algorithm (4.3), let θn be

updated by (3.20) with ξn =
10

(n+1)2 and η = 4, βn = 0.7, γ = 1.9/L and Tikhonov regularization

parameters αn =
1

100(n+1) . We take maximum iteration 5×104 as a common stopping criterion.
Results of these calculations are given in Fig. 6.
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FIGURE 6. Numerical results for Example 5.3.

Remark 5.4. (i) Fig. 6 shows that the suggested Algorithm (4.3) outperforms the Algo-
rithm 1 proposed by Gibali and Thong [13] and the forward-backward algorithm [9] in
terms of computational performance and accuracy.

(ii) It is worth noting that the forward-backward algorithm is weakly convergent in infinite-
dimensional Hilbert spaces. However, our proposed Algorithm (4.3) is strongly conver-
gent in infinite-dimensional Hilbert spaces.

6. FINAL REMARKS

In this paper, we proposed a strong convergent inertial Mann-like algorithm for nonexpansive
mappings in infinite-dimensional Hilbert spaces and obtained strong convergence theorems under
some suitable conditions. In addition, we derived two strong convergence algorithms of monotone
inclusion problems and variational inequality problems. Applications to split feasibility problems,
variational inequality problems and signal recovery were considered. Numerical experiments
confirmed that the theoretical results of our proposed algorithms.
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