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Abstract. In this paper, four extragradient-type algorithms with inertial terms are presented for solving
the variational inequality problem with a pseudomonotone and non-Lipschitz continuous operator in
real Hilbert spaces. Strong convergence theorems of the suggested methods are established under some
suitable conditions imposed on the parameters. Finally, several computational tests and applications in
optimal control problems are given to illustrate the efficiency and advantages of the proposed iterative
schemes over some known ones.
Keywords. Variational inequality; Inertial extragradient method; Viscosity method; Pseudomonotone
operator; Non-Lipschitz mapping.

1. INTRODUCTION

This paper deals with several fast and efficient numerical methods for solving variational
inequality problems in a real Hilbert space H . Let C be a nonempty closed convex subset in H
with inner product 〈·, ·〉 and induced norm ‖ ·‖. Let A : H →H be an operator. The variational
inequality problem (shortly, VIP) for A on C is to find a point x∗ ∈C such that

〈Ax∗,x− x∗〉 ≥ 0, ∀x ∈C . (VIP)

Let VI(C,A) be the solution set of (VIP), which we assume to be nonempty, i.e., VI(C,A) 6= /0.
Variational inequality is an essential tool for studying many fields of mathematics and applied
science (such as physics, regional, social, engineering and other issues); see, for example,
[1, 2, 3, 4]. The theories and methods of variational inequalities have been implemented in
numerous areas of science and have proven to be successful and creative. The theory has been
shown to provide an easy, common, and consistent structure for dealing with possible issues. In
the past few decades, researchers have been very interested in developing effective and robust
numerical approaches for solving variational inequality problems. In particular, there has been
great interest in projection-based methods and their variants. To see various projection-type
methods, one refers to [5, 6, 7, 8, 9, 10, 11, 12] and the references therein.
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The simplest and earliest projection-type method for solving (VIP) is the projected gradient
method: xn+1 = PC (xn−λnAxn). Note that only one projection onto the feasible set is performed.
However, the convergence of this method requires a slightly strong hypothesis that the operator is
strongly monotone. To avoid this strong hypothesis, Korpelevich [5] introduced the extragradient
method (EGM) to solve saddle point problems in Euclidean spaces. Indeed, the extragradient
method is of the form: {

yn = PC (xn−λnAxn) ,

xn+1 = PC (xn−λnAyn) ,
(1.1)

where operator A is monotone and L-Lipschitz continuous, PC denotes the metric projection
from H onto C and λn ∈ (0,1/L). It is know that the sequence {xn} generated by process (1.1)
converges to an element in VI(C,A) when the solution set is nonempty.

Note that the EGM will fail when the Lipschitz constant of the mapping A is unknown or the
mapping A is not Lipschitz continuous. To overcome these difficulties, Iusem [6] proposed a new
modified extragradient method, which generates a sequence {xn} through the following scheme:{

yn = PC (xn−λnAxn) ,

xn+1 = PC (xn−βnAyn) ,
(1.2)

where mapping A is continuous and monotone, sequence {λn} is updated by some backtracking
search method (also called Armijo criteria) and βn := 〈Ayn, xn− yn〉/‖Ayn‖2. Let us briefly
explain the method. Define ∂Hn = {x∈Rm | 〈Ayn,yn−x〉= 0} as a hyperplane. We claim that all
solutions x∗ of (VIP) lie on one side of ∂Hn. Indeed, since A is monotone (or pseudomonotone),
for all x∗ ∈C and yn ∈C, we obtain 〈Ax∗,yn− x∗〉 ≥ 0 and thus 〈Ayn,yn− x∗〉 ≥ 0. If xn is on
the other side, i.e., 〈Ayn,yn− xn〉< 0, then ∂Hn separates xn and x∗. Note that xn−βnAyn is the
orthogonal projection of xn onto ∂Hn. Thus, the iteration point xn+1 obtained by the second
equation of (1.2) is xn is first projected onto ∂Hn and then onto the feasible set C.

It should be noted that the method in [6] may not be efficient because it uses Armijo-type
line search criteria. In fact, most backtracking methods have the following feature: in order
to find out whether a certain “candidate” step size λn meets the required inequality, it may be
necessary to compute PC(xn−λnAxn) many times. This implies that if the backtracking search at
iterative n needs mn steps, then finding yn requires us to compute mn projections on the feasible
set C. This will further lead to a lot of calculation work since the estimation of the projection is
usually not easy. To overcome this shortcoming, an algorithm similar to [6] was proposed by
Iusem and Svaiter [8], who used a new search strategy to determine βn indirectly, which allows
the method to compute only two orthogonal projections on the feasible set C in each iteration.
They proved that the sequence generated by the method converges to the solution of (VIP)
when VI(C,A) 6= /0 and A is a continuous monotone operator. However, the disadvantage of
this method is that the convergence speed is very slow. From the computational point of view,
this method is not efficient and practical. A few years later, Solodov and Svaiter [9] modified
the method of Iusem-Svaiter [8] with a more efficient iterative scheme. The Solodov-Svaiter
method is divided into two steps. First, a backtracking search method is used to find a suitable
hyperplane that separates the current iteration from the solution of the problem; in the second
step, the next iteration is determined as the projection of the current iteration at the intersection
of the feasible set and the half-space containing the solution set. More precisely, their iterative
scheme is described in Algorithm 1.1.
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Algorithm 1.1 The Solodov-Svaiter method for solving (VIP)

Initialization: Take ` ∈ (0,1) and µ ∈ (0,1). Let x1 ∈ Rm be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute yn = PC (xn−Axn). Set r (xn) = xn− yn. If r (xn) = 0, then stop; xn ∈
VI(C,A). Otherwise, go to Step 2.
Step 2. Compute tn = xn−τnr (xn), where τn = `mn and mn is the smallest non-negative integer
m such that 〈A(xn− `mr (xn)) ,r (xn)〉 ≥ µ ‖r (xn)‖2.
Step 3. Compute xn+1 = PC∩Hn (xn), where Hn = {x ∈ Rm : 〈Atn,x− tn〉 ≤ 0}.
Set n = n+1 and go to Step 1.

The geometric interpretation of the methods in [8] and [9] is shown in Fig. 1. As can be seen
from Fig. 1: Iusem-Svaiter method is projected first onto the separating hyperplane ∂Hn and
then onto C; the second projection step of the Solodov-Svaiter method is onto the intersection
C∩Hn. We can observe that the iteration point of Solodov-Svaiter method is closer to the
solution x∗ of the problem than the iteration point calculated by Iusem-Svaiter method. Note
that the Iusem-Svaiter method may be difficult to converge when x∗ is close to the hyperplane
∂Hn. Furthermore, it should be pointed out that adding one more linear constraint to perform a
projection onto C∩Hn will not increase the cost compared to projecting onto C.

xn

∂Hn

x̂n = PHn
(xn)

C

PC (x̂n)

tn

Atn

xn+1 = PC∩Hn(xn)

Hn = {x ∈ Rm | A(tn), x− tn ≤ 0}

PC(xn −Axn) = xn − r(xn)

C ∩Hn

x∗ ∈ VI(C,A)

FIGURE 1. Comparison between Iusem-Svaiter method and Solodov-Svaiter method

It should be highlighted that Algorithm 1.1 needs to compute two projections onto the feasible
set in each iteration. It is significant to reduce the number of projections on the feasible set C in
some cases that the convex set C has a complex expression. This is a fairly common situation,
although the operators of interest in many applications are given by closed formulas that are easy
to calculate, except for orthogonal projections on convex sets. In the case of spheres, boxes or
hyperplanes, the calculation of the projection is in itself is an optimization problem that must
be solved approximately by means of some extra numerical schemes. Therefore, many authors
have constructed different methods to reduce the number of projections in each iteration, see,
e.g., [10, 11, 12, 13] and the references therein. Recently, based on the idea of [9], Vuong and
Shehu [14] combined the Halpern method and the Solodov-Svaiter method to propose a new
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iterative scheme. Compared with (1.2) and Algorithm 1.1, the advantage of their method is
that only one projection on the feasible set needs to be computed in each iteration and strong
convergence can be obtained. Indeed, the algorithm is described as follows:

Algorithm 1.2 The Vuong-Shehu method for solving (VIP)

Initialization: Take {αn} ⊂ (0,1), ` ∈ (0,1) and µ ∈ (0,1). Let x1 ∈C be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute yn = PC (xn−Axn). Set r (xn) = xn− yn. If r (xn) = 0, then stop; xn ∈
VI(C,A). Otherwise, go to Step 2.
Step 2. Compute tn = xn−τnr (xn), where τn = `mn and mn is the smallest non-negative integer
m such that 〈A(xn− `mr (xn)) ,r (xn)〉 ≥ µ/2‖r (xn)‖2.
Step 3. Compute xn+1 = αnx1 +(1−αn)PHn (xn), where Hn = {x ∈C : 〈Atn,x− tn〉 ≤ 0}.
Set n = n+1 and go to Step 1.

They proved that the iterative sequence {xn} formed by Algorithm 1.2 converges an element of
VI(C,A) in norm, provided that mapping A is pseudomonotone, uniformly continuous and sequen-
tially weakly continuous on bounded subsets of C and the sequence {αn} satisfies limn→∞ αn = 0
and ∑

∞
n=1 αn = ∞. It should be pointed out that Algorithm 1.2 degenerates to Algorithm 1.1 when

αn = 0 for any n. Notice that Algorithm 1.2 neither requires that the mapping A be Lipschitz
continuous nor that the Lipschitz constant be known. In fact, mapping A is uniformly continuous
and sequentially weakly continuous, which is a weaker condition than Lipschitz continuity. For
more recent research, see, e.g., [15, 16, 17, 18, 19, 20] and the references therein.

Recently, many scholars have developed various types of inertial algorithms by employing
inertial extrapolation techniques. The inertial method is based on the discrete version of the
second-order dissipative dynamical system originally proposed by Polyak [21]. The main feature
of the inertial-type methods is that they use the previously known sequence information to
generate the next iteration point. More precisely, the procedure requires two iteration steps and
the second iteration step is implemented by the previous two iterations. Note that this small
change can greatly accelerate the convergence speed of the iterative algorithm. In recent years,
many researchers have studied inertial-type algorithms extensively and have successfully solved
many problems, see, e.g., [22, 23, 24, 25, 26, 27] and the references therein.

Motivated and inspired by the above work, and through continuous research in these aspects, in
this paper, we introduce four new extragradient-type algorithms for solving variational inequality
problems in real Hilbert spaces. Strong convergence theorems of these algorithms are obtained
under some mild hypotheses. Finally, we give several numerical examples to support the
theoretical results. Moreover, an application of the optimal control problem is implemented to
demonstrate the performance of our algorithms. Our methods improve and unify some known
results in the literature. Simply put, our contributions in this paper are the following:

• Extend the results in the literature [6, 7, 8, 9] from finite-dimensional spaces to infinite-
dimensional Hilbert spaces.
• Several different backtracking search methods are applied in our algorithms, which allow

the suggested schemes can work without knowing the prior knowledge of the Lipschitz
constant of the mapping. Moreover, our Algorithms 3.2–3.4 only need to calculate the
projection on the feasible set in each iteration.
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• The operator involved in the variational inequality is uniformly continuous pseudomono-
tone. This extends many recent results (see, e.g., [8, 9, 15, 22, 23]) on variational
inequality where the involved operator has to be uniformly continuous monotone.
• Add an inertial term to the algorithms proposed in [17, 18, 19, 20], which accelerate the

convergence speed of the suggested algorithms (see Section 4 and Section 5).
• The strong convergence results of the suggested schemes are obtained under reasonable

assumptions. The viscosity method is used in our algorithms, which gives them a faster
convergence speed than the Halpern-type algorithms proposed in [14, Algorithm 3.3],
[16, Algorithm 4.3] and [17, Algorithm 3.11] (see Section 4 and Section 5).
• Some examples occurring in finite- and infinite-dimensional spaces are presented to

illustrate the efficiency of our algorithms over some existing results in the literature. In
addition, our algorithms are also devised to solve optimal control problems.

The paper is built up as follows. Some essential definitions and technical lemmas that need
to be used are given in the next section. In Section 3, we propose four algorithms and analyze
their convergence. Some numerical experiments to verify our theoretical results are presented in
Section 4. In Section 5, the proposed methods are investigated to solve optimal control problems.
Finally, the paper ends with a brief remark in Section 6, the last section.

2. PRELIMINARIES

Let C be a nonempty closed and convex subset of a real Hilbert space H . The weak
convergence and strong convergence of {xn}∞

n=1 to x are represented by xn ⇀ x and xn → x,
respectively. For each x,y,z ∈H , we have the following inequalities.

(1) ‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉;
(2) ‖αx+(1−α)y‖2 = α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x− y‖2, α ∈ R;
(3) ‖αx+βy+ γz‖2 = α‖x‖2 +β‖y‖2 + γ‖z‖2−αβ‖x− y‖2−αγ‖x− z‖2−βγ‖y− z‖2,

where α,β ,γ ∈ [0,1] with α +β + γ = 1.

For every point x ∈H , there exists a unique nearest point in C, denoted by PC(x) such that
PC(x) = argmin{‖x− y‖, y ∈C}. PC is called the metric projection of H onto C. It is known
that PC is nonexpansive and has the following basic properties:

(i) 〈x−PC(x),y−PC(x)〉 ≤ 0, ∀y ∈C;
(ii) ‖PC(x)−PC(y)‖2 ≤ 〈PC(x)−PC(y),x− y〉, ∀y ∈H ;

(iii) ‖PC(x)− y‖2 ≤ ‖x− y‖2−‖x−PC(x)‖2, ∀y ∈C.

A mapping A : H →H is said to be:

(1) L-Lipschitz continuous with L > 0 if

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x,y ∈H .

If L ∈ (0,1) then mapping A is called contraction. In particular, when L = 1, mapping A
is called nonexpansive.

(2) monotone if
〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈H .

(3) pseudomonotone if

〈Ax,y− x〉 ≥ 0 =⇒ 〈Ay,y− x〉 ≥ 0, ∀x,y ∈H .
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(4) sequentially weakly continuous if for each sequence {xn} converges weakly to x implies
{Axn} converges weakly to Ax.

We give some projection calculation formulas that need to be used in numerical experiments.
For more projection calculations on specific sets, see [28].

(1) The projection of x onto a half-space Hu,v = {x : 〈u,x〉 ≤ v} is computed by

PHu,v(x) = x−max{[〈u,x〉− v]/‖u‖2,0}u .
(2) The projection of x onto a box Box[a,b] = {x : a≤ x≤ b} is computed by

PBox[a,b](x)i = min{bi,max{xi,ai}} .
(3) The projection of x onto a ball B[p,q] = {x : ‖x− p‖ ≤ q} is computed by

PB[p,q](x) = p+
q

max{‖x− p‖,q}(x− p) .

The following lemmas will be used in the convergence analysis of our algorithms.

Lemma 2.1 ([29]). For x ∈H and α ≥ β > 0 the following inequality holds.

‖x−PC(x−αAx)‖
α

≤ ‖x−PC(x−βAx)‖
β

.

Lemma 2.2 ([30]). Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 →H2 is
uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1. Then, A(M)
is bounded.

Lemma 2.3 ([31]). Assume that C is a convex and closed nonempty subset of a real Hilbert
space H . Let h be a real-valued function on H and define K = {x ∈C : h(x) ≤ 0}. If K is
nonempty and h is θ -Lipschitz continuous on C, then

dist(x,K)≥ θ
−1 max{h(x),0}, ∀x ∈C ,

where dist(x,K) denotes the distance function from x to K.

Lemma 2.4 ([32]). Assume that C is a closed and convex subset of a real Hilbert space H . Let
operator A : C→H be continuous and pseudomonotone. Then, x∗ is a solution of (VIP) if and
only if 〈Ax,x− x∗〉 ≥ 0, ∀x ∈C.

Lemma 2.5 ([33]). Let {pn} be a positive sequence, {qn} be a sequence of real numbers, and
{σn} be a sequence in (0,1) such that ∑

∞
n=1 σn = ∞. Assume that

pn+1 ≤ (1−σn) pn +σnqn, ∀n≥ 1 .

If limsupk→∞ qnk ≤ 0 for every subsequence {pnk} of {pn} satisfying liminfk→∞

(
pnk+1− pnk

)
≥ 0,

then limn→∞ pn = 0.

3. MAIN RESULTS

In this section, we introduce four new iterative schemes for solving the variational inequality
problem involving a uniformly continuous and pseudomonotone operator in a real Hilbert space.
These algorithms guarantee strong convergence through the viscosity-type method. In order to
analyze the convergence properties of the algorithms, the mapping and parameters involved in
our methods need to satisfy the following assumptions.
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(C1) The feasible set C is a nonempty, closed and convex subset of H .
(C2) The solution set of the (VIP) is nonempty, that is VI(C,A) 6= /0.
(C3) The operator A : H →H is pseudomonotone, uniformly continuous and sequentially

weakly continuous on bounded subsets of C. In finite-dimensional spaces, it suffices to
assume that operator A : H →H is continuous pseudomonotone on H .

(C4) The mapping f : C→C is ρ-contractive with constant ρ ∈ [0,1).
(C5) Let {εn} be a positive sequence such that limn→∞

εn
αn

= 0, where {αn} ⊂ (0,1) satisfies
limn→∞ αn = 0 and ∑

∞
n=1 αn = ∞.

3.1. The Algorithm 3.1. Our first algorithm is based on Algorithm 1.2 and the Algorithm 3.11
presented by Thong and Gibali [17]. The suggested scheme combines inertial method and
viscosity technique to solve (VIP), which enhances the convergence speed of the method proposed
in [17] (see our numerical experiments). The Algorithm 3.1 is described as follows.

Algorithm 3.1 The modified viscosity-type extragradient algorithm

Initialization: Take γ > 0, ` ∈ (0,1), µ ∈ (0,1). Let x0,x1 ∈C be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n≥ 1). Set wn = xn +θn (xn− xn−1), where

θn =

 min
{

εn

‖xn− xn−1‖
,θ

}
, if xn 6= xn−1;

θ , otherwise.
(3.1)

Step 2. Compute yn = PC (wn−λnAwn), where λn := γ`mn and mn is the smallest non-negative
integer m satisfying

γ`m 〈Awn−Ayn,wn− yn〉 ≤ µ ‖wn− yn‖2 . (3.2)

If wn = yn or Ayn = 0 then stop and yn is a solution of (VIP). Otherwise, go to Step 2.
Step 3. Compute zn = PC (wn−βnAyn), where

βn =
1−µ

γ

‖wn− yn‖2

‖Ayn‖2 .

Step 4. Compute xn+1 = αn f (xn)+(1−αn)zn.
Set n = n+1 and go to Step 1.

Remark 3.1. The following comments are important and basic.

(i) We note here that the inertia calculation criterion (3.1) is easy to implement since the
term ‖xn− xn−1‖ is known before calculating θn. Moreover, it follows from (3.1) and
Assumption (C5) that

lim
n→∞

θn

αn
‖xn− xn−1‖= 0 .

Indeed, we obtain θn‖xn− xn−1‖ ≤ εn,∀n ≥ 1, which together with limn→∞
εn
αn

= 0
implies that limn→∞

θn
αn
‖xn− xn−1‖ ≤ limn→∞

εn
αn

= 0.
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(ii) We prove that if wn = yn or Ayn = 0 then yn ∈ VI(C,A). Indeed, from 0 < λn ≤ γ and
Lemma 2.1, we have

0 =
‖wn− yn‖

λn
=
‖wn−PC (wn−λnAwn)‖

λn
≥ ‖wn−PC (wn− γAwn)‖

γ
,

which indicates that wn is a solution of (VIP), so yn ∈ VI(C,A). On the other hand, since
yn ∈C, one sees that if Ayn = 0 then yn = PC (yn− γAyn), that is yn ∈ VI(C,A).

Lemma 3.1. Suppose that Assumptions (C1)–(C3) hold. The Armijo-like criteria (3.2) is well
defined. Moreover, we get λn ≤ γ .

Proof. If wn ∈ VI(C,A) then wn = PC (wn− γAwn), which implies that wn = yn and thus mn = 0.
If wn /∈ VI(C,A), we assume that the opposite of (3.2) holds, that is,

γ`m 〈Awn−APC (wn− γ`mAwn) ,wn−PC (wn− γ`mAwn)〉> µ ‖wn−PC (wn− γ`mAwn)‖2 .

Therefore, we get

‖Awn−APC (wn− γ`mAwn)‖> µ
‖wn−PC (wn− γ`mAwn)‖

γ`m . (3.3)

We study two cases of wn. First, suppose that wn ∈C. Since A and PC are continuous, we obtain

lim
m→∞
‖wn−PC (wn− γ`mAwn)‖= 0 .

From the fact that A is uniformly continuous, one has

lim
m→∞
‖Awn−APC (wn− γ`mAwn)‖= 0 ,

which combining with (3.3) yields

lim
m→∞

‖wn−PC (wn− γ`mAwn)‖
γ`m = 0 . (3.4)

Let zm = PC (wn− γ`mAwn). According to the characteristics of projection, one obtains

〈zm−wn + γ`mAwn,x− zm〉 ≥ 0, ∀x ∈C ,

which means that

〈(zm−wn)/γ`m,x− zm〉+ 〈Awn,x− zm〉 ≥ 0, ∀x ∈C .

This together with (3.4), we get that 〈Awn,x−wn〉 ≥ 0, ∀x ∈C. This shows that wn ∈ VI(C,A),
which contradicts the hypothesis.

On the other hand, if wn /∈C, then we obtain

lim
m→∞
‖wn−PC (wn− γ`mAwn)‖= ‖wn−PC(wn)‖> 0 ,

and
lim

m→∞
γ`m ‖Awn−APC (wn− γ`mAwn)‖= 0 .

Combining these with (3.3), we get an opposite. The proof is completed. �

Remark 3.2. It is worth noting that we did not use the pseudo-monotonicity of mapping A in
the proof of Lemma 3.1.
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Lemma 3.2. Suppose that Assumptions (C1)–(C3) hold. Let sequences {wn} and {yn} be created
by Algorithm 3.1. Then, we obtain

〈Ayn,wn− p〉 ≥ 1−µ

γ
‖wn− yn‖2 , ∀p ∈ VI(C,A) .

Proof. Recall the projection property ‖x−PC(y)‖2 ≤ 〈x− y,x−PC(y)〉 ,∀x ∈ C,y ∈H . By
setting x = wn and y = wn−λnAwn, we have

‖wn−PC (wn−λnAwn)‖2 ≤ λn 〈Awn,wn−PC (wn−λnAwn)〉 ,
which means that 〈Awn,wn− yn〉 ≥ 1/λn ‖wn− yn‖2. Since yn ∈C and p ∈VI(C,A), we get that
〈Ap,yn− p〉 ≥ 0. From the pseudomonotonicity of mapping A, one sees that 〈Ayn,yn− p〉 ≥ 0.
Thus, using (3.2), we deduce that

〈Ayn,wn− p〉= 〈Ayn,wn− yn〉+ 〈Ayn,yn− p〉 ≥ 〈Ayn,wn− yn〉
= 〈Awn,wn− yn〉−〈Awn−Ayn,wn− yn〉

≥ 1
λn
‖wn− yn‖2− µ

λn
‖wn− yn‖2

=
1−µ

λn
‖wn− yn‖2 ≥ 1−µ

γ
‖wn− yn‖2 .

This completes the proof of the lemma. �

Remark 3.3. By Lemma 3.2, one can sees that if Ayn = 0 then wn = yn, that is, yn ∈ VI(C,A).

Lemma 3.3. Suppose that Assumptions (C1)–(C3) hold. Let {wn} and {yn} be two sequences
formulated by Algorithm 3.1. If there exists a subsequence {wnk} of {wn} such that {wnk}
converges weakly to z ∈H and limk→∞ ‖wnk− ynk‖= 0, then z ∈ VI(C,A).

Proof. From {yn} ⊂C, limk→∞ ‖wnk− ynk‖= 0 and wnk ⇀ z, we have z ∈C. According to the
property of projection and the definition of ynk , we obtain

〈wnk−λnkAwnk− ynk ,x− ynk〉 ≤ 0, ∀x ∈C ,

which can be written as

λ
−1
nk
〈wnk− ynk ,x− ynk〉+ 〈Awnk ,ynk−wnk〉 ≤ 〈Awnk ,x−wnk〉 , ∀x ∈C . (3.5)

Now, we prove that liminfk→∞ 〈Awnk ,x−wnk〉 ≥ 0 by considering two possible situations of
λnk . First, we assume that liminfk→∞ λnk > 0. Since sequence {wnk} is bounded and mapping A
is uniformly continuous, in the light of Lemma 2.2, one gets {Awnk} is bounded. Combining
‖wnk− ynk‖ → 0 and (3.5), we have liminfk→∞ 〈Awnk ,x−wnk〉 ≥ 0. Next, one supposes that
liminfk→∞ λnk = 0. Setting snk = PC

(
wnk−λnk`

−1Awnk

)
, by means of Lemma 2.1, one obtains

`‖wnk− snk‖≤ ‖wnk− ynk‖→ 0. Thus, snk ⇀ z∈C, which means that sequence {snk} is bounded.
This together with the uniform continuity of mapping A, we get

lim
k→∞

‖Awnk−Asnk‖→ 0 . (3.6)

Combining (3.2) and the Cauchy-Schwartz inequality (〈a,b〉 ≤ ‖a‖‖b‖), we have

λnk`
−1∥∥Awnk−APC

(
wnk−λnk`

−1Awnk

)∥∥> µ
∥∥wnk−PC

(
wnk−λnk`

−1Awnk

)∥∥ .
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Therefore, we get 1
µ
‖Awnk−Asnk‖>

‖wnk−snk‖
λnk`

−1 . This combining with (3.6) gives

lim
k→∞

‖wnk− snk‖
λnk`

−1 = 0 .

Moreover, according to the definition of snk and the property of projection, we obtain〈
wnk−λnk`

−1Awnk− snk ,x− snk

〉
≤ 0, ∀x ∈C ,

which yields
1

λnk`
−1 〈wnk− snk ,x− snk〉+ 〈Awnk ,snk−wnk〉 ≤ 〈Awnk ,x−wnk〉 , ∀x ∈C .

Taking the limits on the left and right sides of the above inequality, one has

liminf
k→∞

〈Awnk ,x−wnk〉 ≥ 0 . (3.7)

Hence, we achieved the desired result.
Now, we show that z ∈ VI(C,A). Indeed, one sees that

〈Aynk ,x− ynk〉= 〈Aynk−Awnk ,x−wnk〉+ 〈Awnk ,x−wnk〉+ 〈Aynk ,wnk− ynk〉 . (3.8)

Since ‖wnk− ynk‖→ 0 and mapping A is uniformly continuous, we get limk→∞ ‖Awnk−Aynk‖= 0.
This together with (3.7) and (3.8) yields that liminfk→∞ 〈Aynk ,x− ynk〉 ≥ 0.

Next, we select a positive number decreasing sequence {ζk} such that ζk→ 0 as k→ ∞. For
any k, we represent the smallest positive integer with Nk such that〈

Ayn j ,x− yn j

〉
+ζk ≥ 0, ∀ j ≥ Nk . (3.9)

It can be easily seen that the sequence {Nk} is increasing because {ζk} is decreasing. Moreover,
for any k, from {yNk} ⊂ C, we can assume AyNk 6= 0 (otherwise, yNk is a solution) and set
uNk = AyNk/‖AyNk‖2. Then, we get 〈AyNk ,uNk〉 = 1,∀k. Now, we can deduce from (3.9) that
〈AyNk ,x+ζkuNk− yNk〉 ≥ 0,∀k. According to the fact that A is pseudomonotone on H , we can
show that

〈A(x+ζkuNk) ,x+ζkuNk− yNk〉 ≥ 0 ,
which further yields that

〈Ax,x− yNk〉 ≥ 〈Ax−A(x+ζkuNk) ,x+ζkuNk− yNk〉−ζk〈Ax,uNk〉 . (3.10)

Now, we prove that limk→∞ ζkuNk = 0. We get that ynk ⇀ z since wnk ⇀ z and limk→∞ ‖wnk−
ynk‖= 0. From {yn} ⊂C, we have z ∈C. In view of A is sequentially weakly continuous on C,
one has Aynk ⇀ Az. One assumes that Az 6= 0 (otherwise, z is a solution). According to the
fact that norm mapping is sequentially weakly lower semicontinuous, we obtain 0 < ‖Az‖ ≤
liminfk→∞ ‖Aynk‖. Using {yNk} ⊂ {ynk} and ζk→ 0 as k→ ∞, we have

0≤ limsup
k→∞

‖ζkuNk‖= limsup
k→∞

(
ζk

‖Aynk‖
)
≤ limsupk→∞ ζk

liminfk→∞ ‖Aynk‖
= 0 .

That is, limk→∞ ζkuNk = 0. Thus, from the facts that A is uniformly continuous, sequences {yNk}
and {uNk} are bounded and limk→∞ ζkuNk = 0, we can conclude from (3.10) that liminfk→∞〈Ax,x−
yNk〉 ≥ 0. Therefore,

〈Ax,x− z〉= lim
k→∞
〈Ax,x− yNk〉= liminf

k→∞
〈Ax,x− yNk〉 ≥ 0, ∀x ∈C .
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Consequently, we observe that z ∈ VI(C,A) by Lemma 2.4. This completes the proof. �

Remark 3.4. If mapping A is monotone, then A does not need to satisfy the sequential weak
continuity. Moreover, if the step size is fixed and not updated through (3.2), then Lemma 3.3 is
obviously true.

Theorem 3.1. Suppose that Assumptions (C1)–(C5) hold. Then the iterative sequence {xn}
formulated by Algorithm 3.1 converges to p ∈ VI(C,A) in norm, where p = PVI(C,A)( f (p)).

Proof. We divide our proof in four steps.
Claim 1. The sequence {xn} is bounded. Combining PC is nonexpansive, Lemma 3.2 and the
definition of βn, we get

‖zn− p‖2 = ‖PC (wn−βnAyn)−PC(p)‖2 ≤ ‖wn−βnAyn− p‖2

= ‖wn− p‖2−2βn 〈Ayn,wn− p〉+β
2
n ‖Ayn‖2

≤ ‖wn− p‖2−2βn
1−µ

γ
‖wn− yn‖2 +β

2
n ‖Ayn‖2

≤ ‖wn− p‖2−2
(1−µ)2

γ2
‖wn− yn‖4

‖Ayn‖2 +
(1−µ)2

γ2
‖wn− yn‖4

‖Ayn‖2

= ‖wn− p‖2− (1−µ)2

γ2
‖wn− yn‖4

‖Ayn‖2 , ∀p ∈ VI(C,A) .

(3.11)

This indicates that
‖zn− p‖ ≤ ‖wn− p‖ . (3.12)

By the definition of wn, one sees that

‖wn− p‖ ≤ ‖xn− p‖+αn ·
θn

αn
‖xn− xn−1‖ . (3.13)

From Remark 3.1 (i), one gets θn
αn
‖xn−xn−1‖→ 0. Thus, there is a constant Q1 > 0 that satisfies

θn

αn
‖xn− xn−1‖ ≤ Q1, ∀n≥ 1 . (3.14)

Using (3.12), (3.13) and (3.14), we obtain

‖zn− p‖ ≤ ‖wn− p‖ ≤ ‖xn− p‖+αnQ1, ∀n≥ 1 . (3.15)

From the definition of xn+1 and (3.15), we have
‖xn+1− p‖= ‖αn ( f (xn)− p)+(1−αn)(zn− p)‖

≤ αn ‖ f (xn)− f (p)‖+αn‖ f (p)− p‖+(1−αn)‖zn− p‖
≤ [1−αn(1−ρ)]‖xn− p‖+αn(1−ρ) · (‖ f (p)− p‖+Q1)/(1−ρ)

≤max{‖xn− p‖ ,(‖ f (p)− p‖+Q1)/(1−ρ)}
≤ · · · ≤max{‖x0− p‖ ,(‖ f (p)− p‖+Q1)/(1−ρ)} .

(3.16)

That is, {xn} is bounded. We have {wn}, {yn}, {zn}, {Ayn} and { f (xn)} are also bounded.
Claim 2.

(1−µ)2

γ2
‖wn− yn‖4

‖Ayn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3)
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for some Q2,Q3 > 0. Indeed, it follows from (3.15) that

‖wn− p‖2 ≤ ‖xn− p‖2 +αn(2Q1‖xn− p‖+αnQ2
1)

≤ ‖xn− p‖2 +αnQ2
(3.17)

for some Q2 > 0. Combining (3.11) and (3.17), we have

‖xn+1− p‖2 = ‖(1−αn)(zn− p)+αn ( f (xn)− p)‖2

≤ (1−αn)‖zn− p‖2 +2αn 〈 f (xn)− p,xn+1− p〉

≤ ‖xn− p‖2− (1−µ)2

γ2
‖wn− yn‖4

‖Ayn‖2 +2αn 〈 f (xn)− p,xn+1− p〉+αnQ2 .

Therefore, we obtain

(1−µ)2

γ2
‖wn− yn‖4

‖Ayn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +2αn ‖ f (xn)− p‖‖xn+1− p‖+αnQ2

≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3) ,

where Q3 = supn∈N {2‖ f (xn)− p‖‖xn+1− p‖}.
Claim 3.

‖xn+1− p‖2 ≤ (1− (1−ρ)αn)‖xn− p‖2 +(1−ρ)αn ·
[ 3Q

1−ρ
· θn

αn
‖xn− xn−1‖

+
2

1−ρ
〈 f (p)− p,xn+1− p〉

]
.

Using the definition of wn, we can show that

‖wn− p‖2 ≤ ‖xn− p‖2 +2θn‖xn− p‖‖xn− xn−1‖+θ
2
n ‖xn− xn−1‖2

≤ ‖xn− p‖2 +3Qθn‖xn− xn−1‖ ,
(3.18)

where Q = supn∈N{‖xn− p‖,θ‖xn− xn−1‖}> 0. Using (3.12) and (3.18), we get

‖xn+1− p‖2 = ‖αn f (zn)+(1−αn)zn− p‖2

= ‖αn( f (zn)− f (p))+(1−αn)(zn− p)+αn( f (p)− p)‖2

≤ ‖αn( f (zn)− f (p))+(1−αn)(zn− p)‖2 +2αn〈 f (p)− p,xn+1− p〉
≤ αn‖ f (zn)− f (p)‖2 +(1−αn)‖zn− p‖2 +2αn〈 f (p)− p,xn+1− p〉
≤ αnρ

2‖zn− p‖2 +(1−αn)‖zn− p‖2 +2αn〈 f (p)− p,xn+1− p〉
≤ (1− (1−ρ)αn)‖zn− p‖2 +2αn〈 f (p)− p,xn+1− p〉

≤ (1− (1−ρ)αn)‖xn− p‖2 +(1−ρ)αn ·
[ 3Q

1−ρ
· θn

αn
‖xn− xn−1‖

+
2

1−ρ
〈 f (p)− p,xn+1− p〉

]
.

(TC)

Claim 4. The sequence {‖xn− p‖2} converges to zero. From Lemma 2.5 and Remark 3.1 (i), it
remains to show that limsupk→∞〈 f (p)− p,xnk+1− p〉 ≤ 0 for any subsequence {‖xnk− p‖} of
{‖xn− p‖} satisfies liminfk→∞

(
‖xnk+1− p‖−‖xnk− p‖

)
≥ 0.
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For this purpose, we assume that {‖xnk− p‖} is a subsequence of {‖xn− p‖} such that

liminf
k→∞

(
‖xnk+1− p‖−‖xnk− p‖

)
≥ 0 . (3.19)

Then, we have

liminf
k→∞

(
‖xnk+1− p‖2−‖xnk− p‖2)

= liminf
k→∞

[
(‖xnk+1− p‖−‖xnk− p‖)(‖xnk+1− p‖+‖xnk− p‖)

]
≥ 0 .

It follows from Claim 2 and Assumption (C5) that

limsup
k→∞

(1−µ)2

γ2
‖wnk− ynk‖4

‖Aynk‖2

≤ limsup
k→∞

[
‖xnk− p‖2−‖xnk+1− p‖2]+ limsup

k→∞

αnk(Q2 +Q3)

=− liminf
k→∞

[
‖xnk+1− p‖2−‖xnk− p‖2]≤ 0 ,

which yields that limk→∞ ‖wnk− ynk‖= 0. According to the definition of zn and βn, one has

‖znk−wnk‖= ‖PC (wnk−βnkAynk)−PC(wnk)‖ ≤ ‖wnk−βnkAynk−wnk‖

= βnk ‖Aynk‖=
1−µ

γ

‖wnk− ynk‖2

‖Aynk‖
.

Hence, we get limk→∞ ‖znk−wnk‖= 0. Moreover, using Remark 3.1 (i) and Assumption (C5),
we have

‖xnk−wnk‖= αnk ·
θnk

αnk

‖xnk− xnk−1‖→ 0 ,

and
‖xnk+1− znk‖= αnk‖znk− f (znk)‖→ 0 .

Therefore, we conclude that

‖xnk+1− xnk‖ ≤ ‖xnk+1− znk‖+‖znk−wnk‖+‖wnk− xnk‖→ 0 . (3.20)

From the sequence {xnk} is bounded, there is a subsequence {xnk j
} of {xnk} that satisfies xnk j

⇀ q.
Furthermore,

limsup
k→∞

〈 f (p)− p,xnk− p〉= lim
j→∞
〈 f (p)− p,xnk j

− p〉= 〈 f (p)− p,q− p〉 . (3.21)

We get wnk ⇀ q since ‖xnk − wnk‖ → 0. This together with limk→∞ ‖wnk − ynk‖ = 0 and
Lemma 3.3 yields that q ∈VI(C,A). By the definition of p = PVI(C,A)( f (p)) and (3.21), we infer
that

limsup
k→∞

〈 f (p)− p,xnk− p〉= 〈 f (p)− p,q− p〉 ≤ 0 . (3.22)

Combining (3.20) and (3.22), we get

limsup
k→∞

〈 f (p)− p,xnk+1− p〉 ≤ limsup
k→∞

〈 f (p)− p,xnk− p〉 ≤ 0 . (3.23)

From Remark 3.1 (i), (3.23), Claim 3 and Lemma 2.5, we conclude that xn→ p as n→ ∞. The
proof of Theorem 3.1 is now complete. �
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3.2. The Algorithm 3.2. The second iterative scheme is stated in Algorithm 3.2. This method
is derived from the algorithm 3 suggested by Thong, Shehu and Iyiola [18]. Our contribution is
to add an inertial term to speed up the convergence speed of [18, Algorithm 3].

Algorithm 3.2 The modified inertial projection-type algorithm

Initialization: Take γ > 0, ` ∈ (0,1),µ ∈ (0,1). Let x0,x1 ∈C be arbitrary.
Iterative Steps: Calculate xn+1 as follows:

wn = xn +θn (xn− xn−1) ,

yn = PC (wn−λnAwn) ,

xn+1 = αn f (xn)+(1−αn)PHn (wn) .

where Hn = {x ∈H : hn(x)≤ 0}, hn(x) = 〈wn− yn−λn (Awn−Ayn) ,x− yn〉, {θn} and {λn}
are defined in (3.1) and (3.2), respectively.

The following lemma is very helpful for the convergence analysis of the algorithm.

Lemma 3.4. Suppose that Assumptions (C1)–(C3) hold. Let x∗ be a solution of (VIP). Then
hn (x∗)≤ 0 and hn (wn)≥ (1−µ)‖wn− yn‖2.

Proof. From x∗ ∈ VI(C,A) and yn ∈ C, it follows from Lemma 2.4 that 〈Ayn,x∗− yn〉 ≤ 0.
Combining the definition of yn and the property of projection, we have

hn (x∗) = 〈wn− yn−λnAwn,x∗− yn〉+λn 〈Ayn,x∗− yn〉 ≤ 0 .

Using (3.2) we can show that
hn (wn) = 〈wn− yn−λn (Awn−Ayn) ,wn− yn〉

= ‖wn− yn‖2−λn 〈Awn−Ayn,wn− yn〉
≥ ‖wn− yn‖2−µ ‖wn− yn‖2 = (1−µ)‖wn− yn‖2 .

The proof of this lemma is now complete. �

Remark 3.5. From Remark 3.1 (ii), if wn = yn then yn ∈ VI(C,A). Otherwise, it follows from
Lemma 3.4 that hn (wn)> 0, which indicates that wn /∈ Hn. According to the calculation formula
of projection onto a half-space, we get

PHn (wn) = wn−
〈vn,wn− yn〉
‖vn‖2 vn, where vn = wn− yn−λn (Awn−Ayn) .

Theorem 3.2. Suppose that Assumptions (C1)–(C5) hold. Then the sequence {xn} formed by
Algorithm 3.2 converges to p ∈ VI(C,A) in norm, where p = PVI(C,A)( f (p)).

Proof. We divide our proof in four steps.
Claim 1. The sequence {xn} is bounded. Let zn = PHn (wn). From Lemma 2.3 and the property
of projection, we get

‖zn− p‖2 ≤ ‖wn− p‖2−‖wn−PHn(wn)‖2

= ‖wn− p‖2−dist2 (wn,Hn) ,
(3.24)

which means that ‖zn− p‖ ≤ ‖wn− p‖. Using the same argument as (3.13)–(3.16), we get {xn}
is bounded. So {wn}, {yn}, {Awn}, {Ayn} and { f (xn)} are also bounded.
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Claim 2. [
M−1(1−µ)‖wn− yn‖2 ]2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3) ,

and

‖zn−wn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3) .

Indeed, there exists M > 0 such that ‖wn− yn−λn (Awn−Ayn)‖ ≤M, ∀n. For any u,v ∈H ,
we show that

‖hn(u)−hn(v)‖= ‖〈wn− yn−λn (Awn−Ayn) ,u− v〉‖
≤ ‖wn− yn−λn (Awn−Ayn)‖‖u− v‖
≤M‖u− v‖ .

This shows that hn(x) is M-Lipschitz continuous on H . From Lemma 2.3 and Lemma 3.4, we
observe that

dist(wn,Hn)≥M−1hn (wn)≥M−1(1−µ)‖wn− yn‖2 ,

which together with (3.24) implies

‖zn− p‖2 ≤ ‖wn− p‖2−
[
M−1(1−µ)‖wn− yn‖2 ]2 . (3.25)

By the definition of xn+1, (3.17) and (3.25), we have

‖xn+1− p‖2 = ‖αn ( f (xn)− p)+(1−αn)(zn− p)‖2

≤ (1−αn)‖zn− p‖2 +2αn 〈 f (xn)− p,xn+1− p〉
≤ ‖xn− p‖2−

[
M−1(1−µ)‖wn− yn‖2 ]2 +αn(Q2 +Q3) .

where Q2 and Q3 are defined in Claim 2 of Theorem 3.1. Moreover, it follows from (3.17) and
(3.24) that

‖xn+1− p‖2 ≤ ‖zn− p‖2 +2αn 〈 f (xn)− p,xn+1− p〉
≤ ‖xn− p‖2−‖zn−wn‖2 +αn(Q2 +Q3) .

The two required results can be obtained through some simple transformations.
Claim 3. We can get the same conclusion as stated in Claim 3 of Theorem 3.1 by using (TC).
Claim 4. The sequence {‖xn− p‖2} converges to zero. This proof is very similar to Claim 4 in
Theorem 3.1. Let {‖xnk− p‖} be a subsequence of {‖xn− p‖} such that (3.19) holds. It follows
from Claim 2 and Assumption (C5) that

limsup
k→∞

[
M−1(1−µ)‖wnk− ynk‖2 ]2 ≤ 0 and limsup

k→∞

‖wnk− znk‖2 ≤ 0 .

Thus, we get limk→∞ ‖wnk−ynk‖= 0 and limk→∞ ‖wnk− znk‖= 0. Using the same arguments as
(3.20)–(3.22), we get that (3.23) holds. Therefore, from Remark 3.1 (i), Claim 3 and Lemma 2.5,
we conclude that xn→ p as n→ ∞. The proof of Theorem 3.2 is now complete. �
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3.3. The Algorithm 3. The third method is explained in Algorithm 3.3. This approach improves
the results of Vuong and Shehu [14] and Thong et al. [19].

Algorithm 3.3 The first modified inertial extragradient-viscosity algorithm

Initialization: Take ` ∈ (0,1), µ > 0, λ ∈ (0,1/µ). Let x0,x1 ∈C be arbitrary.
Iterative Steps: Calculate xn+1 as follows:

wn = xn +θn (xn− xn−1) ,

yn = PC (wn−λAwn) ,

tn = wn− τnrλ (wn) , rλ (wn) = wn− yn ,

xn+1 = αn f (xn)+(1−αn)PHn (wn) .

where {θn} is defined in (3.1), Hn = {x ∈C : hn(x)≤ 0}, hn(x) = 〈Atn,x− tn〉, τn = `mn and
mn is the smallest non-negative integer m satisfying

〈Awn−A(wn− `mrλ (wn)) ,rλ (wn)〉 ≤ µ ‖rλ (wn)‖2 . (3.26)

Before analyzing the convergence of the algorithm, we introduce the following lemmas.

Lemma 3.5. Suppose that Assumptions (C1)–(C3) hold. The Armijo-line search rule (3.26) is
well defined.

Proof. Since mapping A is uniformly continuous on C and ` ∈ (0,1), we get

lim
m→∞
〈Awn−A(wn− `mrλ (wn)) ,rλ (wn)〉= 0 .

Furthermore, it can be easily seen that ‖rλ (wn)‖> 0 (otherwise, yn is a solution of (VIP)). Thus,
there exists a non-negative integer mn satisfying (3.26). �

Lemma 3.6. Suppose that Assumptions (C1)–(C3) hold. Let x∗ be a solution of (VIP). Then
hn (x∗)≤ 0 and hn (wn)≥ τn

(
λ−1−µ

)
‖rλ (wn)‖2. In particular, if rλ (wn) 6= 0 then hn (wn)> 0.

Proof. From x∗ ∈VI(C,A) and tn ∈C, it follows from Lemma 2.4 that hn(x∗) = 〈Atn,x∗−tn〉 ≤ 0.
Using the definition of hn, one sees that

hn (wn) = 〈Atn,wn− tn〉= 〈Atn,τnrλ (wn)〉= τn 〈Atn,rλ (wn)〉 . (3.27)

By the projection property ‖x−PC(y)‖2 ≤ 〈x− y,x−PC(y)〉 ,∀x ∈C,y ∈H . Taking x = wn and
y = wn−λAwn, we get

‖wn−PC (wn−λAwn)‖2 ≤ λ 〈Awn,wn−PC (wn−λAwn)〉 ,
which yields that 〈Awn,rλ (wn)〉 ≥ λ−1 ‖rλ (wn)‖2. From (3.26), one has

〈Atn,rλ (wn)〉 ≥ 〈Awn,rλ (wn)〉−µ ‖rλ (wn)‖2

≥
(
λ
−1−µ

)
‖rλ (wn)‖2 .

(3.28)

Combining (3.27) and (3.28), we observe that hn (wn)≥ τn
(
λ−1−µ

)
‖rλ (wn)‖2. �

Lemma 3.7. Suppose that Assumptions (C1)–(C3) hold. Let sequence {wn} be created by
Algorithm 3.3. If limn→∞ τn‖rλ (wn)‖2 = 0 then limn→∞ ‖wn− yn‖= 0.
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Proof. We show that limn→∞ ‖wn− yn‖= 0 by consider two cases of τn. First, we assume that
liminfn→∞ τn > 0. Thus, there exists a positive number τ such that τn ≥ τ > 0,∀k ∈N. Moreover,
one sees that

‖wn− yn‖2 =
1
τn

τn ‖wn− yn‖2 ≤ 1
τ
· τn ‖wn− yn‖2 .

Therefore, we get limn→∞ ‖wn− yn‖= 0. On the other hand, we assume liminfn→∞ τn = 0. In
this situation, we suppose that {nk} is a subsequence of {n} such that

lim
k→∞

τnk = 0 and lim
k→∞

‖wnk− ynk‖= a > 0 . (3.29)

Let yk = wnk− 1
`τnk(wnk− ynk). It follows that

lim
k→∞

‖yk−wnk‖2 = lim
k→∞

1
`2 τnk · τnk ‖wnk− ynk‖2 = 0 ,

which together with the fact that mapping A is uniformly continuous gives limk→∞ ‖Awnk−Ayk‖= 0.
From the definition of yk and (3.26), we obtain

〈Awnk−Ayk,wnk− ynk〉> µ ‖wnk− ynk‖2 , (3.30)

which further yields that limk→∞ ‖wnk− ynk‖= 0. This contradicts the Hypothesis (3.29). Thus,
we conclude that limn→∞ ‖wn− yn‖= 0. The proof is completed. �

Theorem 3.3. Suppose that Assumptions (C1)–(C5) hold. Then the sequence {xn} produced by
Algorithm 3.3 converges to p ∈ VI(C,A) in norm, where p = PVI(C,A)( f (p)).

Proof. We divide our proof in four steps.
Claim 1. The sequence {xn} is bounded. Indeed, put zn = PHn(wn), the formula (3.24) also
holds. Thus, we get that ‖zn− p‖ ≤ ‖wn− p‖. Using the same facts as (3.13)–(3.16), we have
{xn} is bounded. So {wn}, {yn}, {tn} and { f (xn)} are also bounded.
Claim 2.

‖zn−wn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3) ,

and [
L−1

τn
(
λ
−1−µ

)
‖rλ (wn)‖2 ]2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3) .

Combining (3.17) and (3.24), we have

‖xn+1− p‖2 ≤ (1−αn)‖zn− p‖2 +2αn 〈 f (xn)− p,xn+1− p〉
≤ ‖wn− p‖2−‖zn−wn‖2 +2αn 〈 f (xn)− p,xn+1− p〉
≤ ‖xn− p‖2−‖zn−wn‖2 +αn(Q2 +Q3) ,

where Q2 and Q3 are defined in Claim 2 of Theorem 3.1. The first inequality can be obtained by
a simple conversion.

Since {Atn} is bounded, there is L > 0 such that ‖Atn‖ ≤ L,∀n. For any u,v ∈H , we get

‖hn(u)−hn(v)‖= ‖〈Atn,u− v〉‖ ≤ ‖Atn‖‖u− v‖ ≤ L‖u− v‖ ,
which means that hn(x) is L-Lipschitz continuous on H . From Lemma 2.3 and Lemma 3.6, we
find that

dist(wn,Hn)≥ L−1hn (wn)≥ L−1
τn
(
λ
−1−µ

)
‖rλ (wn)‖2 .
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This together with (3.24) gives

‖zn− p‖2 ≤ ‖wn− p‖2−
[
L−1

τn
(
λ
−1−µ

)
‖rλ (wn)‖2 ]2 .

Therefore, we get

‖xn+1− p‖2 ≤ (1−αn)‖zn− p‖2 +2αn 〈 f (xn)− p,xn+1− p〉
≤ ‖xn− p‖2−

[
L−1

τn
(
λ
−1−µ

)
‖rλ (wn)‖2 ]2 +αn(Q2 +Q3) ,

A simple transformation of the above equation can get the second inequality.
Claim 3. We can get the same conclusion as stated in Claim 3 of Theorem 3.1 by using (TC).
Claim 4. The sequence {‖xn− p‖2} converges to zero. This proof is very similar to Claim 4 in
Theorem 3.1. Let {‖xnk− p‖} be a subsequence of {‖xn− p‖} such that (3.19) holds. It follows
from Claim 2 and Assumption (C5) that

limsup
k→∞

‖wnk− znk‖2 ≤ 0 and limsup
k→∞

[
L−1

τnk

(
λ
−1−µ

)
‖rλ (wnk)‖2 ]2 ≤ 0 ,

Therefore, we get limk→∞ ‖wnk − znk‖ = 0 and limk→∞ τnk ‖rλ (wnk)‖2 = 0. It follows from
Lemma 3.7 that limk→∞ ‖wnk− ynk‖ = 0. Using the same arguments as (3.20)–(3.22), we get
that (3.23) holds. Therefore, from Remark 3.1 (i), Claim 3 and Lemma 2.5, we conclude that
xn→ p as n→ ∞. The proof of Theorem 3.3 is now complete. �

3.4. The Algorithm 3.4. Finally, we propose the last iterative scheme with a new separating
hyperplane. This idea comes from the recent paper by Reich et al. [20], and the method can be
seen as a direct modification of Algorithm 3.3.

Algorithm 3.4 The second modified inertial extragradient-viscosity algorithm

Initialization: Take ` ∈ (0,1), µ > 0, λ ∈ (0,1/µ). Let x0,x1 ∈C be arbitrary.
Iterative Steps: Calculate xn+1 as follows:

wn = xn +θn (xn− xn−1) ,

yn = PC (wn−λAwn) ,

tn = wn− τnrλ (wn) , rλ (wn) = wn− yn ,

xn+1 = αn f (xn)+(1−αn)PHn (wn) .

where {θn} is defined in (3.1), Hn = {x ∈C : hn(x)≤ 0}, hn(x) = 〈Atn,x−wn〉 +
τn
2λ
‖rλ (wn)‖2, τn = `mn and mn is the smallest non-negative integer m satisfying

〈Awn−A(wn− `mrλ (wn)) ,rλ (wn)〉 ≤ µ/2‖rλ (wn)‖2 . (3.31)

We start the convergence analysis of the algorithm by proving the following lemma.

Lemma 3.8. Suppose that Assumptions (C1)–(C3) hold. Let x∗ be a solution of (VIP). Then
hn (x∗)≤ 0 and hn (wn) =

τn
2λ
‖rλ (wn)‖2. In particular, if rλ (wn) 6= 0 then hn (wn)> 0.

Proof. It follows from Lemma 3.6 that 〈Atn,x∗− tn〉 ≤ 0 and 〈Awn,rλ (wn)〉 ≥ λ−1 ‖rλ (wn)‖2.
From (3.31), one has

〈Atn,rλ (wn)〉 ≥ 〈Awn,rλ (wn)〉−
µ

2
‖rλ (wn)‖2 ≥

(
1
λ
− µ

2

)
‖rλ (wn)‖2 ,
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which together with the definition of hn(x) and tn yields that

hn (x∗) =−〈Atn,wn− tn〉+ 〈Atn,x∗− tn〉+
τn

2λ
‖rλ (wn)‖2

≤−τn 〈Atn,rλ (wn)〉+
τn

2λ
‖rλ (wn)‖2

≤−τn

2
(
2λ
−1−µ

)
‖rλ (wn)‖2 +

τn

2λ
‖rλ (wn)‖2

=−τn

2
(
λ
−1−µ

)
‖rλ (wn)‖2 ≤ 0 .

On the other hand, from the definition of hn(x), it can be easily seen that hn (wn) =
τn
2λ
‖rλ (wn)‖2.

This completes the proof. �

Theorem 3.4. Suppose that Assumptions (C1)–(C5) hold. Then the sequence {xn} provided by
Algorithm 3.4 converges to p ∈ VI(C,A) in norm, where p = PVI(C,A)( f (p)).

Proof. We divide our proof in four steps.
Claim 1. The sequence {xn} is bounded. Take zn = PHn(wn), then the formula (3.24) also holds.
Thus, we get that ‖zn− p‖ ≤ ‖wn− p‖. Using the same facts as (3.13)–(3.16), we get that the
sequence {xn} is bounded. So the sequences {wn}, {yn}, {tn} and { f (xn)} are also bounded.
Claim 2.

‖zn−wn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3) ,

and [ τn

2λL
‖rλ (wn)‖2 ]2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn(Q2 +Q3) .

As stated in Claim 2 of Theorem 3.3, we can easily obtain the first inequality. Since {Atn} is
bounded, there is L > 0 such that ‖Atn‖ ≤ L,∀n. For any u,v ∈H , we get

‖hn(u)−hn(v)‖= ‖〈Atn,u− v〉‖ ≤ ‖Atn‖‖u− v‖ ≤ L‖u− v‖ ,
which indicates that hn(x) is L-Lipschitz continuous on H . From Lemma 2.3 and Lemma 3.8,
we observe that

dist(wn,Hn)≥ L−1hn (wn) =
τn

2λL
‖rλ (wn)‖2 .

This together with (3.17), (3.24) and the definition of xn+1 yields

‖xn+1− p‖2 ≤ (1−αn)‖zn− p‖2 +2αn 〈 f (xn)− p,xn+1− p〉

≤ ‖wn− p‖2−
[ τn

2λL
‖rλ (wn)‖2 ]2 +αnQ3

≤ ‖xn− p‖2−
[ τn

2λL
‖rλ (wn)‖2 ]2 +αn(Q2 +Q3) ,

where Q2 and Q3 are defined in Claim 2 of Theorem 3.1. A simple transformation of the above
equation can get the second inequality.
Claim 3. We can get the same conclusion as stated in Claim 3 of Theorem 3.1 by using (TC).
Claim 4. The sequence {‖xn− p‖2} converges to zero. This proof is very similar to Claim 4 in
Theorem 3.1. Let {‖xnk− p‖} be a subsequence of {‖xn− p‖} such that (3.19) holds. It follows
from Claim 2 and Assumption (C5) that

limsup
k→∞

‖wnk− znk‖2 ≤ 0 and limsup
k→∞

[ τnk

2λL
‖rλ (wnk)‖2 ]2 ≤ 0 .
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Therefore, we get limk→∞ ‖wnk− znk‖= 0 and limk→∞ τnk ‖rλ (wnk)‖2 = 0. By Lemma 3.7, one
has limk→∞ ‖wnk− ynk‖ = 0. Using the same arguments as (3.20)–(3.22), we get that (3.23)
holds. Therefore, from Remark 3.1 (i), Claim 3 and Lemma 2.5, we conclude that xn→ p as
n→ ∞. The proof of Theorem 3.4 is now complete. �

Remark 3.6. Note that the proposed algorithms 3.1–3.4 have obtained strong convergence
theorems in real Hilbert spaces. They can solve non-Lipschitz continuous and pseudomonotone
variational inequalities. These two properties give them an advantage and applicability compared
with algorithms involving monotone and Lipschitz continuous mappings. It should be point
out that Algorithms 3.1 and 3.2 need to calculate multiple projections onto the feasible set
in each iteration, while Algorithms 3.3 and 3.4 only require to compute one projection onto
the feasible set per iteration. Furthermore, our algorithms combine inertial technology and
viscosity method making them converge faster than the algorithms proposed in the literature
[14, 16, 17, 18, 19, 20, 34] (see Section 4 and Section 5).

4. NUMERICAL EXAMPLES

In this section, we perform some numerical tests to show the computational efficiency of
the proposed iterative schemes and compare them with several previously known strongly
convergent algorithms, including the Algorithm 3.3 suggested by Vuong and Shehu [14] (shortly,
VS Alg. 3.3), the Algorithm 4.3 proposed by Shehu et al. [16] (SDJ Alg. 4.3), the Algorithm 3.11
introduced by Thong and Gibali [17] (TG Alg. 3.11), the Algorithm 3 offered by Thong et al. [18]
(TSI1 Alg. 3), the Algorithm 3.3 presented by Thong et al. [19] (TSI2 Alg. 3.3), the Algorithm 4
given by Reich et al. [20] (RTDLD Alg. 4) and the Algorithm 3.2 provided by Gibali et al. [34]
(GTT Alg. 3.2). We use the FOM Solver [35] to solve the projections involved in all algorithms.
All the programs were implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU
@ 1.60GHz computer with RAM 8.00 GB. The parameters of all algorithms are set as follows.

• For all algorithms, we set αn = 1/(n+1) and f (x) = 0.1x.
• For the suggested Algorithms 3.1–3.4, TG Alg. 3.11, TSI1 Alg. 3, TSI2 Alg. 3.3,

RTDLD Alg. 4, we select γ = 1.5, `= 0.5, µ = 0.4. Adopt inertial parameters τ = 0.4
and εn = 100/(n+ 1)2 in our proposed algorithms. In addition, we set λ = 0.5/µ in
TSI2 Alg. 3.3, RTDLD Alg. 4 and our Algorithms 3.3 and 3.4.
• Pick γ = 0.5 and σ = 0.4 in VS Alg 3.3. For GTT Alg. 3.2, we choose λ = 1.5, `= 0.5,

µ = 0.4, γ = 1.5. Take the fixed step size λn = 0.5/L and γ = 1.5 in SDJ Alg. 4.3.

Example 4.1. Consider the form of linear operator A : Rm→ Rm as follows: A(x) = Gx+ g,
where g ∈ Rm and G = BBT+S+E, matrix B ∈ Rm×m, matrix S ∈ Rm×m is skew-symmetric,
and matrix E ∈ Rm×m is diagonal matrix whose diagonal terms are non-negative (hence G is
positive symmetric definite). We choose the feasible set C is a box constraint with the form
C = [−2,5]m. It is easy to see that A is Lipschitz continuous monotone and its Lipschitz constant
L = ‖G‖. In this numerical example, all entries of B,E are generated randomly in [0,2] and S
is generated randomly in [−2,2]. Let q = 0. Then the solution set is x∗ = {0}. The maximum
number of iterations of 200 as a common stopping criterion and the initial values x0 = x1 are
randomly generated by rand(m,1) in MATLAB. We use Dn = ‖xn− x∗‖ to measure the n-th
iteration error of all algorithms. The numerical results of all algorithms with four different
dimensions are shown in Fig. 2.
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FIGURE 2. Numerical results for Example 4.1

Example 4.2. In this example, we consider a test that occurs in an infinite-dimensional space.
Let H = L2([0,1]). Its inner product and norm are defined as 〈x,y〉= ∫ 1

0 x(t)y(t)dt and ‖x‖=
(
∫ 1

0 |x(t)|2 dt)1/2, respectively. Assume that the feasible set is a ball and its form is C = {x ∈H :
‖x‖ ≤ 2}. Define a mapping h : C→ R by h(m) = 1/(1+ ‖m‖2). It is easy to verify that the
mappin h is bounded (h(m) ∈ [0.2,1]) and Lh-Lipschitz continuous with Lh = 16/25. Recall that
the Volterra integration operator V : H →H is given by

V (m)(t) =
∫ t

0
m(s)ds, ∀t ∈ [0,1],m ∈H .

Then V is bounded linear monotone (see [36, Exercise 20.12]) and its operator norm is ‖V‖= 2
π

.
Now, we define the mapping A : C→H as follows:

A(m)(t) = h(m)V (m)(t), ∀t ∈ [0,1],m ∈C .

Note that A is not monotone. For example, take n = 1 and m = 2, then 〈An−Am,n−m〉 =
− 1

10 < 0. In fact, A is pseudomonotone. Indeed, for all m,n ∈C, assume that 〈Am,n−m〉 ≥ 0.
Next we show that 〈An,n−m〉 ≥ 0. Note that 〈V m,n−m〉 ≥ 0 (since h(m)> 0.2). Therefore,
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we obtain
〈An,n−m〉= h(n)〈V (n),n−m〉 ≥ h(n)[〈V (n),n−m〉−〈V (m),n−m〉]

= h(n)〈V (n)−V (m),n−m〉 ≥ 0 .

Hence, mapping A is pseudomonotone. Moreover, we have

‖Am−An‖= ‖h(m)V (m)−h(n)V (n)‖
≤ ‖h(m)V (m)−h(m)V (n)‖+‖h(m)V (n)−h(n)V (n)‖
≤ |h(m)|‖V (m)−V (n)‖+‖V (n)‖‖h(m)−h(n)‖
≤ (|h(m)|‖V‖+‖V‖‖n‖Lg)‖m−n‖

≤ 114
25π
‖m−n‖, ∀m,n ∈C .

Thus, mapping A is L-Lipschitz continuous with L = 114/(25π). We choose the maximum
number of iterations of 50 as a common stopping criterion and use Dn = ‖xn+1− xn‖ to measure
the error of the n-th step since we do not know the solution of the problem. Fig. 3 shows the
numerical behaviors of all algorithms with four starting points.
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FIGURE 3. Numerical results for Example 4.2
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Remark 4.1. As seen from Examples 4.1 and 4.2, the proposed schemes are easy to implement
and efficient. Note that the choice of initial values and dimensions does not significant affect
on CPU time required to reach the same stopping criterion. Moreover, our algorithms embed
inertial terms making them converge faster than some known algorithms in the literature [14, 16,
17, 18, 19, 20, 34]. It is worth noting that VS Alg. 3.3, TG Alg. 3.11 and SDJ Alg. 4.3 converge
very slowly because they use the Halpern method to ensure strong convergence.

5. APPLICATIONS TO OPTIMAL CONTROL PROBLEMS

In this section, we use the proposed algorithms to solve the variational inequality that occurs in
the optimal control problem. Assume that L2 ([0,T ],Rm) represents the square-integrable Hilbert
space with inner product 〈p,q〉 = ∫ T

0 〈p(t),q(t)〉dt and norm ‖p‖2 =
√
〈p, p〉. The optimal

control problem is described as follows:

p∗(t) ∈ Argmin{g(p) | p ∈V}, t ∈ [0,T ] , (5.1)

where V represents a set of feasible controls composed of m piecewise continuous functions. Its
form is expressed as follows:

V =
{

p(t) ∈ L2 ([0,T ],Rm) : pi(t) ∈
[
p−i , p+i

]
, i = 1,2, . . . ,m

}
. (5.2)

In particular, the control p(t) may be a piecewise constant function (bang-bang type). The
terminal objective function has the form

g(p) = Φ(x(T )) , (5.3)

where Φ is a convex and differentiable defined on the attainability set.
Assume that the trajectory x(t) ∈ L2([0,T ] satisfies the constraints of the linear differential

equation system:
d
dt

x(t) = Q(t)x(t)+W (t)p(t), 0≤ t ≤ T, x(0) = x0 , (5.4)

where Q(t) ∈ Rn×n, W (t) ∈ Rn×m are given continuous matrices for every t ∈ [0,T ]. By the
solution of problem (5.1)–(5.4), we mean a control p∗(t) and a corresponding (optimal) trajectory
x∗(t) such that its terminal value x∗(T ) minimizes objective function (5.3). From the Pontryagin
maximum principle, there exists a function s∗ ∈ L2([0,T ] such that the triple (x∗,s∗, p∗) solves
for a.e. t ∈ [0,T ] the system

d
dt

x∗(t) = Q(t)x∗(t)+W (t)p∗(t), x∗(0) = x0 , (5.5)

d
dt

s∗(t) =−Q(t)Ts∗(t), s∗(T ) = ∇Φ(x∗(T )) , (5.6)

0 ∈W (t)Ts∗(t)+NV (p∗(t)) , (5.7)

where NV (p) is the normal cone to V at p defined by

NV (p) =
{

/0, if p /∈V ;
{ι ∈H : 〈ι ,q− p〉 ≤ 0,∀q ∈V}, if p ∈V .

Denoting Gp(t) =W (t)Ts(t), Khoroshilova [37] showed that Gp is the gradient of the objective
function g. Therefore, system (5.5)–(5.7) is reduced to the variational inequality problem

〈Gp∗,q− p∗〉 ≥ 0, ∀q ∈V .
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Recently, there are many approaches to solve the optimal control problem (see, e.g., [14, 37, 38]).
Note that our algorithms 3.1–3.4 guarantee strong convergence and do not require the Lipschitz
constant. Moreover, the addition of inertial terms makes them converge faster.

For the convenience of numerical computation, we discretize the continuous functions. Given
the mesh size h = T/N, where N is a natural number. We identify any discretized control
pN = (p0, p1, . . . , pN−1) with its piece-wise constant extension:

pN(t) = pi, ∀t ∈ [ti, ti+1) , ti = ih, i = 0,1, . . . ,N .

Furthermore, we identify the discretized state xN =(x0,x1, . . . ,xN) and co-state sN =(s0,s1, . . . ,sN).
They have the form of piecewise linear interpolation:

xN(t) = xi +
t− ti

h
(xi+1− xi) , ∀t ∈ [ti, ti+1) , i = 0,1, . . . ,N−1 ,

and
sN(t) = si +

ti− t
h

(si−1− si) , ∀t ∈ (ti−1, ti] , i = N,N−1, . . . ,1 .

We use the classical Euler discretization method to solve the systems of ODEs (5.5) and (5.6).
Thus, the Euler discretization of the original system (5.1)–(5.4) is given by

minimize ΦN
(
xN , pN)

subject to xN
i+1 = xN

i +h
[
Q(ti)xN

i +W (ti) pN
i
]
, xN(0) = x0 ,

sN
i = sN

i+1 +hQ(ti)
T sN

i+1, s(N) = ∇Φ(xN) ,

pN
i ∈V .

It is well known that the Euler discretization has the error estimate O(h) [39]. This indicates
that the difference between the discretized solution pN(t) and the original solution p∗(t) is
proportional to the mesh size h. That is, there exists a constant K > 0 such that

∥∥pN− p∗
∥∥≤ Kh.

Next, we present several examples to illustrate the numerical performance of all the algorithms
(except the Algorithm 4.3 proposed by Shehu et al. [16] since we do not know the Lipschitz
constant of the mapping related to the problems). For all algorithms, we set αn = 10−4/(n+1).
Take inertial parameters τ = 0.4 and εn = 10−4/(n+1)2 in the suggested iterative schemes. The
remaining parameters are the same as those set in Section 4. The initial controls p0(t) = p1(t) are
randomly generated in [−1,1] and the stopping criterion is ‖pn+1− pn‖ ≤ 10−4 or the maximum
number of iterations of 1000.

Example 5.1 (Control of a harmonic oscillator, see [40]).
minimize x2(3π)

subject to ẋ1(t) = x2(t) ,

ẋ2(t) =−x1(t)+ p(t), ∀t ∈ [0,3π] ,

x(0) = 0 ,

p(t) ∈ [−1,1] .

The exact optimal control of Example 5.1 is known:

p∗(t) =

{
1, if t ∈ [0,π/2)∪ (3π/2,5π/2) ;

−1, if t ∈ (π/2,3π/2)∪ (5π/2,3π] .
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Fig. 4 shows the approximate optimal control and the corresponding trajectories of Algorithm 3.3.
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FIGURE 4. Numerical results for Example 5.1

We now consider an example in which the terminal function is not linear.

Example 5.2 (Rocket car [38]).

minimize 0.5
(
(x1(5))

2 +(x2(5))
2
)
,

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = p(t), ∀t ∈ [0,5] ,

x1(0) = 6, x2(0) = 1 ,

p(t) ∈ [−1,1] .

The exact optimal control of Example 5.2 is

p∗ =

{
1 if t ∈ (3.517,5] ;

−1 if t ∈ (0,3.517] .

Fig. 5 shows the approximate optimal control and the corresponding trajectories of Algorithm 3.2.

0 1 2 3 3.51 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Initial and optimal controls

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3

-2

-1

0

1

2

3

4

5

6

7

(b) Optimal trajectories

FIGURE 5. Numerical results for Example 5.2
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Finally, the computational results of all algorithms in Examples 5.1 and 5.2 are shown in
Table 1.

TABLE 1. Comparison of the number of iterations and execution time of all
algorithms in Examples 5.1 and 5.2

Algotithms
Example 5.1 Example 5.2

Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 1000 0.33185 1000 1.4964
Our Alg. 3.2 90 0.032926 91 0.11501
Our Alg. 3.3 90 0.035086 1000 1.1794
Our Alg. 3.4 1000 0.41878 1000 1.5389
TG Alg. 3.11 1000 0.39974 1000 1.6707
TSI1 Alg. 3 91 0.046058 91 0.13369
TSI2 Alg. 3.3 91 0.044275 1000 1.2113
RTDLD Alg. 4 1000 0.43071 1000 1.6214
VS Alg. 3.3 100 0.043549 117 0.06323
GTT Alg. 3.2 101 0.042715 355 0.46617

Remark 5.1. From Fig. 4, Fig. 5 and Table 1, we know that the suggested algorithms can
work well when the terminal function is linear or nonlinear. Moreover, the step size of the
Algorithm 4.3 suggested by Shehu et al. [16] requires the prior information of the Lipschitz
constant of the mapping, and our algorithms can automatically update the iteration step size.

6. FINAL REMARKS

This paper presented four extragradient projection-type algorithms to solve pseudomonotone
and uniformly continuous variational inequalities in real Hilbert spaces. Strong convergence
theorems of the suggested methods are confirmed under some suitable conditions. The advantage
of our approaches is that no prior knowledge of the Lipschitz constant of the mapping is required.
In addition, our algorithms add inertial terms to speed up the convergence speed of the algorithms
without inertial terms. Numerical experiments in finite- and infinite-dimensional spaces show
that the computational performance of the proposed iterative schemes is higher compared with
previously known ones. Moreover, our methods are designed to solve optimal control problems.
The schemes obtained in this paper improved and unified relevant results in the literature.
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