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Abstract. The purpose of this paper is to study the iterative scheme of the Halpern type for a commutative
semigroup J = {5 : A € 2} of Bregman quasi-nonexpansive mappings on a closed and convex subset of
a Banach space. A strong convergence theorem is established for finding a common fixed point solution.
Our results extend and improve some related results in the current literature. In addition, we present
numerical examples to illustrate the performance of our method in finite and infinite dimensional spaces.
Keywords. Fixed point; Halpern method; Bregman quasi-nonexpansive; Strong convergence; Banach
space.

1. INTRODUCTION

Let X be a real reflexive Banach space endowed with the topological dual X*. The value of
the functional { € E* at x € X can be written as ({,x). Let C be a nonempty closed and convex
subset of X. Let S be a mapping from C into itself. Let f : X — (—oo, +c0) be a proper, lower
semi-continuous and convex function with the effective domain domf := {u € X : f(u) < 4oo}.
Given any u € domf, we denote by f°(u,v) the right-hand derivative of f at u in the direction
v € X, that is,

o e i St sv) = fu)
fo(u,v) = }{I(l) ; .
The function f is called Gateaux differentiable at u if limg o(f(u+sv) — f(u))/s exists at any
v € X. The function f is called Fréchet differentiable at u if limit (1.1) is attained uniformly
in ||v|]| = 1. Recall that f is uniformly Fréchet differentiable on a subset of X if limit (1.1) is
attained uniformly for ||v|| =1 and u € X. Let f : X — (—oo,+o0] be a convex and Gateaux
differentiable function. The bifunction function D : domf x int(domf) — [0,+o0) is given by

Dy(v,u) = f(v) = f(u) = (Vf(),v—u).

(1.1)
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Thus Dy is called the Bregman distance with respect to f; see [1, 2]. The Bregman projection
of u € int(domf) onto the nonempty, closed and convex set C C domf is the unique vector
Projg(u) € C such that Df(Projé(u),u) =inf{Ds(v,u),v € C}; see [1].

Let f: X — (—o0,+0) be a function. If X is reflexive, we say that f is Legendre [3] if and
only if it satisfies the following two conditions

(1) we denote by int(domf) the interior of the domain of f, which is nonempty. f is Gateaux
differentiable on int(domf) with domf = int(domf);

(2) we denote by int(domf*) the interior of the domain of f*, which is nonempty. f* is Giteaux
differentiable on int(domf*) with dom f* = int(domf™).

If X is reflexive, we always have (df)~! = df* (see [4]). From this, and conditions (1),

(2), we have the following facts (al)Vf = (Vf*)~!; (@2)ranVf = domV f* = int(domf*);

(a3)ranVf* = domV f = int(domf). Moreover, conditions (1) and (2) assert that functions f

and f* are strictly convex on the interior of their respective domains; see [3].

The study of fixed point problems plays a key role in different areas of applied mathematics
such as convex optimization, set-valued optimization, etc [5, 6, 7]. The problem of finding
fixed points of nonlinear mappings has been the object of active research in various setting.
The practical importance of fixed point problems sheds new light on the iterative methods for
finding fixed points of different types of mappings in nonlinear analysis; see [8, 9, 10, 11] and
the references therein. The general study of the strong convergence property is an interesting
subject. Let us give K a nonempty closed and convex subspace of a Hilbert space H. In order to
achieve strong convergence results, the special attention has been paid to the studies concerning
the analysis of the so-called Halpern’s iteration [12] acting on a Hilbert space as follows

Vxi,u € K, xpq1 = Ouu+ (1 — 0)Sx,,Vn > 1, (1.2)

where o, =n~%,a € (0,1) and S : K — K is nonexpansive, that is, ||x—y|| > ||Sx—Sy||, Vx,y € K.
Indeed, it was proved that {x,} converges strongly to a solution of F(S), where F(S) stands
for the nonempty fixed point set of S. In recent years, because of its simple construction, this
approach has been widely used by many authors in different styles. The study with the parameter
sequence {a,} provides a valuable tool to analyze the Halpern iteration. As an alternative to
Halpern’s iteration, Lions [13] obtained a strong convergence, when { ¢, } satisfies the following
conditions (i) lim, e 0, = 0; (i1) Y| O = o0; (i) limy e (Op 41 — O) / Oc,f 1 = 0. On the other
hand, Wittmann [14] proved the strong convergence if the condition (ii1) mentioned above is
removed and replaced with the condition (iv) Y.~ |04y41 — 04| < eo. In 2002, Xu [15] introduced
another control condition (v) limy, (0411 — 04)/04,+1 = 0 instead of conditions (iii) or (iv)
and proved the strong convergence of {x,}. Naturally, there is a puzzling question arises in
literature. Is it possible to ensure the strong convergence of the sequence {x,} generated by
(1.2) by providing that { @, } satisfies only condition (i) and (ii)? In this perspective, Suzuki [16],
based on the following Halpern-type iteration, gave a positive answer. Based on the following
algorithm

Vxi,u € K, xpp1 = oqu+ (1 — ) (Bxn+ (1 —B)Sxy),Vn > 1.
He established the strong convergence of the iterative sequence {x,} when conditions (i) and (ii)
are imposed on the parameter sequence { @, } only. Recall that S is said to be quasi-nonexpansive
with respect to a nonempty F(S) if ||x —y|| > ||Sx—y||, forall x € K and y € F(S). When we try
to extend some results from Hilbert spaces to Banach spaces, our study may encounter some
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difficulties since many of useful examples for (quasi) nonexpansive mappings in Hilbert spaces
that are no longer (quasi) nonexpansive in Banach spaces (for example, the metric projection
Pro ji onto a nonempty, closed and convex subset K of a Hilbert space H). In that case, as one
of the most effective tools to overcome these difficulties is to use the Bregman distance function
Dy instead of the norm || - || and Bregman (quasi) nonexpansive mappings instead of (quasi)
nonexpansive mappings. It paves the way to further studies concerning the analysis of iterative
algorithms for solving variational inequalities and optimization problems with the help of the
Bregman’s technique; see [17, 18, 19, 20]. An element p € C is said to be an asymptotically
fixed point of § if there exists a sequence {x,} C C such that x, — p and ||x,, — Sx,|| — 0 as
n — oo; see [21]. We denote the asymptotical fixed point set of S by F'(S). We say that a mapping
T is Bregman strongly nonexpansive (BSNE, for short) if £(S) # @ and D¢(p,x) > D(p,Sx),
Vx € C, p € F(S), and if whenever {x,} C C is bounded, lim_,o(D¢(p,x,) — D ¢(p,Sxs)) = 0,
Vp € F(S), it yields that lim, e D #(Sx,, x,) = 0, see [22]. Recently, Halpern-type method has
been developed for finding a common fixed point of a given family of operators.

In this direction, Zegeye [23] improved the Halpern method and presented the following
iterative scheme

Vxl,u S Cv Xn+1 = Pm]g(vf*(anvf(”) + (1 - an)vf(SNSN—l e 'Slxn)>)7

where S, : C — C are BSNE mappings with F(S,,) = F(S,,), forallm =1,2,--- N and {o,} C
(0,1) satisfies conditions (i) and (ii). If # = %:1 F(S;) # 0, it was proved that {x, } converges
to Pro ]J;;(u) in norm.

Recently, numerical methods for the fixed point problems with BSNE mappings have been
studied in various ways; see, e.g., [22, 24, 25] and the references therein. We say that a mapping
S : C — C is Bregman quasi-nonexpansive (BQNE, for short) with respect to a nonempty
fixed point set F(S) [26] if D¢(p,Sx) < Dy¢(p,x),¥x € C,p € F(S). This class of mappings
is of particular significance in convex optimization theories and fixed point problems since it
encompasses other noteworthy classes of Bregman nonexpansive type operators (for example, all
BSNE mappings are BQNE, in uniformly convex Banach spaces); see [17]. Closely related to
this field is the problem of finding a common fixed point solution of a communicative semigroup
of nonexpansive mappings (i.e., ||Sx —Sy|| < |[x—y||, Vx,y € C, where C is a closed and convex
subset of a reflexive Banach space). In [27], Yao and Noor proposed a viscosity approximation
method for solving this problem and proved the following theorem.

Theorem 1.1. (VI-Method) Let C be a nonempty closed convex subset of a reflexive Banach
space X. Let C be any bounded subset of C. Suppose that 2 is an unbounded subset of R™ such
thatr+t € 2,Vrt € 2. Let J ={S; : t € 2} be a commutative semigroup of nonexpansive
self-mappings defined on C such that S,S; = Sy+4, Vr,it € 2. Let g : C — C be a contraction
(i.e., 3x € (0,1) such that x||x—y|| > ||g(x) —g(y)|, ¥x,y € C). Let us denote by O the set of
common fixed point of J, i.e., 0 = {x € C:x=Syx,y € 2}. Assume that O # 0. Let {0y, }, {B,}
and {A,} be three sequences in (0,1). Let {y,} be a sequence in 2. Additionally, assume that

(1) Y —>ocasn— oo
(2) an“"ﬁn"‘ln =1;
(3) 0 <liminf, . B, <limsup,_,., B < 1;
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(4) the family J satisfies the uniformly asymptotically regularity condition

lim  sup||SsS,x — Syx|| = 0, uniformly ins € 2.
rGQ,r—)ooxeC-

For any x| € C, define a sequence {x,} by
Xp4+1 = O‘ng(xn) + Buxn +)LnSynxna n>1.
Then {x,} converges to a common fixed point of the family J in norm.

As a significant refinement of the research work discussed above, we deal with a new Halpern
type method for finding a common fixed point corresponding to a semigroup of BQNE mappings
in real reflexive Banach spaces. We prove the strong convergence of the sequences generated
by the proposed algorithm with the weak restrictions, that is, the control variable {a, } satisfies
conditions (1) and (i1) only. Our paper is organized as follows. Section 2 presents certain essential
preliminary definitions and propositions, which will be useful for establishing our main result.
Section 3 is devoted to the study of our iterative method. In Section 4, some examples are
considered. Section 5, the last section, ends this paper with a concluding remark.

2. PRELIMINARIES

This section contains some definitions, notations and propositions, which will be used in the
proof of our main result in the next section.

Give a Legendre and Gateaux differentiable function f : X — R. Based on the ideas from
[2, 28], we restrict our attention to the function V; : X x X — [0, +o0) with respect of f given by

Vi(z,2") = f(2) + (") — (z,2"), Vz € X, 2" € X".
Thus, one sees that V; is nonnegative and V;(z,2") = Dy(z,Vf*(z")), forall z € X, z* € X*. With
the help of the subdifferential inequality from [29], we obtain that
(P"\ V(") —z2) SVp(z, 2" +p") = Vp(z,2"), VzeX, 2", p" € X"

If f: X — (—o0,+00| is a proper, lower semi-continuous and convex function, then f* : X* —
(—o0,+o0] is a proper, weak™ lower semi-continuous and convex function; see [30]. In this case,
V is convex in the second variable. Hence,

gtin(Z,Vf(xi)) > Dy (z,Vf* <i§tin(xi)>>, VzeX.

As similar to the equivalent properties of metric projections in Hilbert spaces, the Bregman
projection with respect to totally convex and differentiable functions has the following results.

Proposition 2.1 ([18]). Let f be totally convex on int(domf). Let C be a nonempty, closed and
convex subset of int(domf). Given x € int(domf), £ € C, the following conditions are equivalent

(i) X is the Bregman projection of x onto C with respect to f;
(ii) X is the unique solution of the variational inequality, (Vf(z) —Vf(x),y—z) >0, Vy € C;
(iii) % is the unique solution of the inequality, D¢(z,x) +Dy(y,z) < Dy(y,x), Vy € C.
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Let X be a Banach space and let B, := {z € X : ||z|| < r}, Vr > 0. Then a function f : X — R
is said to be uniformly convex on bounded subsets of X [31] if p,(s) > 0, Vr,s > 0, where
pr: [0,40c0) — [0,09] is given by

A 1-4 — f(A 1-4
- 700 +(1=2)£0) ~ (-t (1= A)y)
x,yEB,,|x—y||=s,A€(0,1) A(l=A)

for all s > 0. The function p, is called the gauge of uniform convexity of f.

Proposition 2.2 ([32]). Let X be a Banach space. Let f : X — R be uniformly convex on bounded
subsets of X. Let r be a positive constant. Then

Z/lnxn gZ — Xidjpr(|Jxi — x5)), Vi, j € {0,1,2,--- ,n},

k=1

n
where A, € (0,1), (x¢)i_, € B,, ¥ A& =1, and p, denotes the gauge of uniform convexity of f.
k=1

A function f : X — (—oo,+oo| is said to be strongly coercive if lim 1) +oo, see [31].

| —>=eo I
Proposition 2.3 ([31]). Let X be a reflexive Banach space and let f : X — R be a continuous
convex function which is strongly coercive. Then the following assertions are equivalent

(i) f is bounded on bounded subsets and uniformly smooth on bounded subsets of X ;
(ii) f* is Fréchet differentiable and V f* is uniformly norm-to-norm continuous on bounded
subsets of X*;
(iii) domf = X*, f* is strongly coercive and uniformly convex on bounded subsets of X*.

Let f: X — (—o0, 40| be a convex and Géateaux differentiable function. We say that the
function f is totally convex at a point x € int(domf) if its modulus of total convexity at x is
positive, in other words, the function, v : int(domf) x [0,4-0), defined by

ve(x,s) =inf{D¢(y,x) : y € domf,||y — x|| = s},

is positive whenever s > 0; see [33]. Moreover, the function f is said to be totally convex when
it is totally convex at each point x € int(domf). Let a function v : ind(domf) x [0,40c0) —
[0, 4-o0] be the modulus of total convexity associated with the function f on the set X, given by
v(X,s) =inf{vs(x,s) :x € XNint(domf)}, Vs > 0. Then f is called totally convex on bounded
sets if v(X,s) is positive for any nonempty bounded subset of X, for any s > 0.

Proposition 2.4 ([34]). Let x € int(domf). The following statements are equivalent:
(i) the function f is totally convex at x;

(ii) for any sequence {y,} C domf, lim,_ oD f(yp,x) = 0= lim,_ e ||y —x|| =0

Proposition 2.5 ([25]). Let f : X — R be proper, convex, lower-semicontinuous, Gdteaux
differentiable on int(domf) and totally convex at a point x € int(domf). If Dy(x,x,) is bounded,
then {x,} is also bounded.

Proposition 2.6 ([26]). Let f : X — R be a Legendre and totally convex function. If x| € X and
the sequence {Df(xn,x1)} is bounded, then the sequence {x,} is bounded too.
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We say that the function f is sequentially consistent [18] if for any two sequences {x,} and
{yn} in int(domf) and domf, respectively such that the first one is bounded and

i Dy 0n,50) =0 lim_ vyl =0

Proposition 2.7 ([33]). The function f is totally convex on bounded sets if and only if it is
sequentially consistent.

Proposition 2.8 ([35]). If f : X — R is uniformly Fréchet differentiable and bounded on bounded
subsets of X, then V f is uniformly continuous on bounded subsets of X from the strong topology
of X to the strong topology of X*.

Proposition 2.9 ([36]). Let f : X — (—oo,+0) be a Legendre function. Let C be a nonempty
closed convex subset of int(domf). Let S : C — C be a Bregman nonexpansive mapping with
respect to f. Then F(S) is closed and convex.

Proposition 2.10 ([37]). Let {a,} be a sequence of nonnegative real numbers satisfying the
following relation

an+1 S (1 - an)an + anén; n Z no,
where {a,} C (0,1) and {5, } C R satisfy the following conditions lim,_e 0, =0, Y77 | 04 = oo,
and limsup, ., 6, < 0. Then, lim, . a, = 0.

Proposition 2.11 ([38]). Let {a,} be a sequence of real numbers such that there exists a
subsequence {k;} of {k} such that ay, < ay,+1 for all i € N. Then there exists an increasing
sequence {my,} C N such that m,, — o as n — o and the following properties are satisfied by all
(sufficiently large) numbers n € N

am, < am,+1, Qn < Amy+-1-

Indeed, my, is the largest number k in the set {1,2,--- ,n} such that a, < a holds.

3. MAIN RESULT

Theorem 3.1. Let C be a nonempty closed and convex subset of a reflexive Banach space X with
a weakly sequentially continuous duality mapping. Let 2 be an unbounded subset of R™ such
that r+t € 2 whenever r,t € 2. Let J = {S; : A € 2} be a commutative family of Bregman
quasi-nonexpansive self-mappings on C with 0 = {x € C: S;x = x,A € 2} # 0. Additionally,
assume that

(1) (I—Sy) is demiclosed at zero, for A € 2;

(2) J is a semigroup such that S,S; = Sy14, V 1r,t € 2;

(3) J is a uniformly asymptotically regular semigroup on C, i.e.,

lim sup ||S;Syx — S,x|| = Ouniformly int € 2,
xeC
where C is any bounded subset of C, see [39];

(4) Jis a L(A)-Lipschizian semigroup on C, i.e., there exists a bounded measurable function
A — L(A) :[0,00) — (0,+o0) such that

[S(A)x = S(A)yl| < L(A)[|x—y||, Vx,y € C,A >0,
forany S € J, see [39].
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Let {y,} be a sequence in 2 such that Y, — o, as n — oo. Let {0, }, {Bu} be sequences in
(0,1) such that 0 < liminf,,_,, 0, <limsup,_ ., 0, < 1, lim,_,ee B, =0 and };>_, B, = oo. For
any x1 € C,u € X, define a sequence {x,} by

{yn =Vf* ((Xan(Xn) + (1 - (Xn)Vf(Synxn)>, 3.1
Xn1 = ProjEV £ (BaVF () + (1= BV (y). '
Then the sequence {x,} generated by (3.1) converges, as n — oo, to 7 = Pro jéu in norm.

f

Proof. From Proposition 2.9, it ensues that .7 is closed and convex. As a consequence, Pro j' is
well-defined. According to Proposition 2.3, we deduce that f* is uniformly convex on bounded
subsets of X*. We define a mapping p; : [0, 4o0) — [0, 0] as the gauge of uniform convexity of
f*, associated with a constant r > 0. Let us now fix any z € .%. From (3.1), and Proposition 2.2,
we get that
Dy(z,yn) = V(2,0 V f (xn) + (1 = 0) Vf (S, %))
= (f(2) = (2,0, V.f (xn) + (1 — &) V£ (Sy, %))
+ (0 V. (xn) + (1 = 06) Vf(Sy,%0)))
< (f(2) = 0z, Vi () = (1= 0) (2, VI (Syxn)) + 0 f ™ (V. (x0))
+ (1 =) (VI (Syxn)) — 0 (1= ) p; ([ VS (xn) = VI (Sy ) 1))

= V(e () + (1= ) Ve, VF(Sy) 2
= 0 (1= )P, ([[V.f (xn) = Vf (Sy ) 1))
= 0, D f(2,xn) + (1 — @y) D¢ (2, Sy, Xn)
= 0 (1= )P, ([[V.f (xn) = VS (Sy ) 1))
< D (2,%n) = (1 = 0)p; ([[Vf (3n) = VI (S ) [)-
By combining successively (3.1) with (3.2), one clearly derives that
Dy (z,%n11) < Dy(z, VI (BaVf(u) + (1= Ba) VS (v)))
< BuDs(z,u) + (1= Bu)Ds(z,n) 3.3)
< BuDy(z,u) + (1 — Bn)Dy(z,%n)
= 0 (1= Bu) (1 = 06) p, ([IVf (xn) = VI (Sy,x0) )
As a classical result, we observe that
0 (1= Bn) (1 = aa)p; (V.S () = VS (Sy ) 1) 3.4)

< BuDy(z,u) + (1= Bu)Dy(z,%n) — Dy(2, Xn41)-

By neglecting the nonnegative term o, (1 — B,)(1 — &,)p; (|| V.f(xn) — V£ (Sy,x0)]]) in (3.3), we
additionally obtain that
D (2, %n11) < BaDg(z,u) + (1= Bn) D (2, %n)
<max{Dy(z,u),Ds(z,xn)}
< --- <max{Dy(z,u),D¢(z,20)}-
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From this and Proposition 2.5, one sees that {x, } is bounded. Then, we assert that there exists a
subsequence {z, } of {x,} such that z;, — p as i — oo. For the sake of simplicity, we set

On := (Vf () =Vf (), VI (BaV S () + (1 = Bu) VS (n)) — 2)- (3.5)
With the help of (3.5), we calculate that

Dy (z,%n11) < Vi(z, (1= Bu)Vf (vn) + BaV S (u))
<Vi(z, (1= Ba)Vf (yn) + BaV.f (1) = Ba(V.f (u) = V[ (2))) + BuSn
=Dy (2, VI (BaVf(2) + (1= Ba) VS (¥n) + Bnbn
<(1— ﬁn)Df(Z7xn) + B 0n-
Next, let us consider two possible cases on {Dy(z,x,)}.
Case 1: Suppose that there exists ko € N such that {Df(z,x,)} is non-increasing for all n > ny.

In such case, we directly obtain that {Dy(z,x,)} is convergent. From this and (3.3), one deduces
that

(3.6)

lim o, (1= 2,) (1= 06)p/ ([[V f (xn) = V[ (Sy, ) [|) = 0.

n—oo

By using the property of p), we directly obtain that
i [|V.f () — V£ (S| = 0. (3.7)

Since f is a strongly coercive and uniformly convex on bounded subsets of X, it shows that f* is
uniformly Frechet differentiable on bounded subsets of X* and V f* is uniformly continuous. In
light of (3.7), we immediately get that

IV () = V@) | = IVFAVS 00V f () + (1= 0) Vf(Sy,x0))) = VI ()]

= (1—0a,)||Vf(xn) = VI(Syxn)|| = 0, as n — oo, (3.8)

Keeping in mind that f is strongly coercive, uniformly convex on bounded subsets of X, it
shows that f* is uniformly Fréchet differentiable on bounded subsets of X*. From this and
Proposition 2.8, we observe that V f* is uniformly continuous. By putting together (3.7) and
(3.8), it ensues that

lim ||Sy,x, —x,[| =0, (3.9)
n—oo
and
r}ij{}oﬂyn—an =0. (3.10)

Since S, satisfies L(A )-Lipschizian for any A € 2, we immediately deduce that

1% = Saxall < llxn — Sy, %nll + 1Sy, xn — SaSyxnll 4 [|S2. Sy, %0 — Saxnll

< sup|[S3Sy,x — Sy, x[| + [[Sy,xn — Xl +L(A) |0 — Sy, xul, (3.11)
xeC

where C is a bounded subset of C, which contains {x,}. Due to the fact that J = {S; : 1 € 2}
satisfies the uniformly asymptotically regularity condition, it follows from (3.9) with (3.11) that

lim S5, —x| = 0.
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By invoking the fact that (I — S ) is demiclosed at zero for A € 2, we check that p € 0.
Observing that z = Projsu, lim,_,.. B, = 0, and the fact that z,, — p as i — oo, one successively
finds from (3.10) that

limsup 6, = lim 6,, = (Vf(u) —Vf(z),p—z) <O0.
1—ro

n—soo

From lim, ;.. 8, =0 and },7_; B, = oo, Proposition 2.10 leads to lim, .. Df(z,x,) = 0. Since f
is totally convex on bounded sets of X, we conclude from Proposition 2.4 that lim,, X, =z
immediately.

Case 2: Suppose that there is no ng € N such that {D(z,z,) };,_,, is monotonically decreasing.
Accordingly, by using Proposition 2.11, there exists a strictly increasing sequence {m;} of
positive integers such that

Df(Z,ij) < Df(Z7ij+1)7 Df(Z7Zj) < Df(Z7ZmJ~+1)7 vjeN.
We go back to (3.4) to obtain that
Om; (1= Bin; ) (1 = @ )0, (VS (zm) =V (S 2m ) |) < By D (2,1) = Biny Dy (252 )
On the other hand, by using the conditions

0 < liminfo, <limsupo, < 1
n—ree n—oo

and lim,,_,.. B, = 0, one sees that
lim [[Vf(zm;) = Vf(Sy, 2m;) ]| = 0.
J—roo J
The same argument as Case 1 shows that
lim ||ymj _xij =0,
Jeo

which further implies that
limsup 8, = (Vf(u) = Vf(z),p—2z) <0. (3.12)
Jjree
Collecting the above results (3.6), and (3.12), one arrives at

Df(Z,xj) < Df(zaxmﬁ-l) < 5mj-

Consequently, we deduce that lim_,.. Df(z,x;) = 0. By assumption, we find that lim; e x; = z.
Therefore, we can conclude that {x,} converges to z = Pro jzu, as n — oo, in norm. This

completes the proof. 0

4. NUMERICAL EXAMPLES

In this section, we present two numerical examples to test our main result. All the codes
were written in Python 3.7 and run on PC with Intel (R) Core (TM) 15-8250U CPU @1.60GHz.
We apply our proposed algorithm to solve the problems and compare numerical results with
Algorithm VI-Method mentioned in Theorem 1.1.
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Example 4.1. Let C = R be an M-dimensional Euclidean space. For any sequence {y,} C
[1,+20), we define an M x M square matrix by Sy, := (ay,;)1<i,j<m Whose terms are given by

1/y,, ifj=M+1—iandj<i;
ay, =< —1/%, ifj=M+1—iandj>i;
0, otherwise.

With the given C and J = {Sy, : % € [1,+o0) }, we use Algorithm (3.1) and Algorithm VI-Method
to solve the fixed point problem. The contraction mapping can be defined by g(x) = 0.5x, Vx € C
for Algorithm VI-Method. Without loss of generality, we ssume that

() a,=0.05,B8,=1/(n+1), % = 10+n (Vn € N) for Algorithm (3.1);

2) a, =0.05 B,=1/(n+1), 4, =1/(5+n) and , = 10+ n (Vn € N) for Algorithm

VI-Method.

The initial point x; is randomly choose from [0, 1]”. Fix the anchor point u = x;. We take the
number of iteration n = 1000 as the stopping criterion.

Figure 1 shows a comparison between Algorithm (3.1) and Algorithm VI-Method in two cases
respectively when M = 30 and M = 50. Based on the provided data, we see that our proposed
algorithm dramatically reduces iterations and the running time needed to find a fixed point of the
semigroup J over the feasible set C, compared with Algorithm VI-Method.

As displayed in Figure 2, we know that the convergent point x = (0,0,0,0)T, which is also
the common fixed point of J.

Example 4.2. Let X = L*([0, 1]) with the inner product

1
(x,y) = /0 x(p)y(p)dp, Vx,y€X,
and the induced norm

1 1
Il = ([ Wp)Pap)’, wrex.

Suppose that C := {x € X : ||x|| < 1} is a unit ball. Give a sequence {};,} C [1,+o0). We define
mappings Sy, : C — X by

Syx(p) = max{0,x(p)/%}.
We check that J = {Sy, : %, € [1,+0c0)} is a semigroup of 1-Lipschitz continuous and quasi-

nonexpansive mappings on C. The solution set of the fixed point problem with respect to  is
given by I' = {0} # 0. According to [40], we have that

x
il > 1
=1 Tl
X, if [|x||;2 < 1.

We set o, = 0.5, B, = 1/(n+3), 1, =2 +n (Vn € N) for Algorithm (3.1). We give the starting
point x; = 1. Fix the anchor point u = x;. We take the number of iterations n = 1000 as the
stopping criterion. The numerical result is described in Figure 3.

In Figure 3, the value of errors {||x,/;2}, {|[xn —¥nll;2} and {||xy+1 —xn||;2} is represented by
the y-axis, and the number of iterations and the running time are represented by the x-axis. The
convergence of ||x,||;2 to 0 indicates that the generated sequence {x, } converges to the solution
0, as n — oo,
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{||%n4+1 — xnl| 2} for Example 4.2.

5. CONCLUSIONS

In this paper, we investigated BQNE mappings in our convergence analysis. One of the
highlights of this paper is that our proposed iterative scheme is extremely general since BQNE
mappings have some remarkable properties not shared by some other operators. In addition, our
fixed point results of BQNE mappings can be applied to many optimization problems in finite
dimensional spaces. Numerical experiments approved the convergence analysis of the algorithm.
The results presented in this paper also showed the computational advantages of our proposed
algorithm, compared with the previous algorithm [27].
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